Timing infectious disease control to minimize the risk of pathogen emergence

Van Hai KHONG (Under the supervior of Philippe CARMONA and Sylvain GANDON)

Université de Nantes

Journée de Probabilité, Anger, 19-23 June 2023

▲御▶▲臣▶▲臣▶ 臣 のQの

Motivation

- Infectious diseases have been a significant challenge throughout human history, causing widespread outbreaks and devastating consequences.
- However, advancements in modeling techniques have allowed us to better understand and predict disease trends, leading to more effective strategies for minimizing their impact

Van Hai KHONG

Outline

Introduction

2 The constant case

3 The periodic case

- Short period approximation
- Long period approximation

The optimal timing of disease control strategies

- Heuristics for large periods
- Comparison with the branching process (no density dependence)

5 Reference

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の � @

The question:

What is the best time to take action to reduce the risk of pathogens ?

The answer:

The best time to control the pathogen is at the end of a favorable period.

▶ ▲ 国 ▶ ▲ 国 ▶ …

∃ 990

We consider the deterministic SI model

$$\frac{dS}{dt} = \lambda - \beta(t) \frac{SI}{S+I} - \mu S$$
(1.1)
$$\frac{dI}{dt} = \beta(t) \frac{SI}{S+I} - \mu I$$
(1.2)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

where

- S(t), I(t) are susceptible and infected individual in population,
- $\beta(t)$ is transition rate,
- λ the recruitment rate,
- μ death rate.

The stochastic dynamics is described by the transitions:

$$X^{(K)} \to X^{(K)} + 1 \text{ with rate} \qquad \beta(t)X^{(K)}(t)\left(1 - \frac{X^{(K)}(t)}{K}\right) \qquad (1.3)$$
$$X^{(K)} \to X^{(K)} - 1 \text{ with rate} \qquad \mu X^{(K)}(t) \qquad (1.4)$$

(10)

・ロト・日本・日本・日本・日本・日本

where:

- K the capacity: the maximal host population
- $X^{(K)}(t)$ the number of infected host at time t
- $S^{(\kappa)}(t) = \kappa X^{(\kappa)}(t)$ the number of susceptible host.

Theorem (Law of large numbers (Kurtz [4]))

Fixed T > 0, if x(t) = (s(t), i(t)) solution of the dynamic system:

$$\begin{aligned} \dot{s} &= \lambda - \mu s - \beta \frac{si}{s+i} \\ \dot{s} &= \beta \frac{si}{s+i} - \mu i. \end{aligned}$$

(1.5)

with initial condition if $x_0 \in \mathbb{R}$ and in probability

$$\lim_{K\to\infty}\frac{X^{(K)}(0)}{K}=x_0,$$

then for every $\epsilon > 0$,

$$\lim_{K \to +\infty} \mathbb{P}\left(\sup_{t \le T} \left| \frac{X^{K}(t)}{K} - x(t) \right| > \epsilon \right) = 0$$
(1.6)

ロト (日) (日) (日) (日) (日) (日)

The constant case:

- The reproductive number $R_0 = \frac{\beta}{\mu}$
- The extinction time $au_0^{(K)} = \inf \left\{ t > 0 : X^{(K)}(t) = 0 \right\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

The constant case:

- The reproductive number $R_0 = \frac{\beta}{\mu}$
- The extinction time $au_0^{(K)} = \inf \left\{ t > 0 : X^{(K)}(t) = 0 \right\}$
- If *R*₀ < 1
 - $\tau_0^{(\kappa)}$ is stochastically dominated by an exponential random variable of parameter $\mu \beta$.

 \Rightarrow The expected time to extinction is at most equal to $\frac{1}{u-\beta}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 8/27

• If $R_0 > 1$

• The take off probability: for large capacity K, the pathogen reaches a fixed proportion x_0K with $0 < x_0 < 1$ is

$$\mathbb{P}\left(X^{(K)} ext{ takes off } \right) \sim 1 - rac{\mu}{eta} \,.$$
 (2.1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• We assume that $\frac{X^{(K)}(0)}{K} \to x_0 \in (0, 1)$. And ersson and Djehiche [1] proved that the mean extinction time of this process is exponential in the capacity K:

$$\mathbb{E}\left[\tau_{0}^{(K)}\right] \sim \sqrt{\frac{2\pi}{K}} \frac{R_{0}}{(R_{0}-1)^{2}} e^{KV_{0}}, \quad \text{with} \quad V_{0} = \ln R_{0} - 1 + \frac{1}{R_{0}} > 0. \quad (2.2)$$

Quasi stationary distribution in the constant case

There exists a quasi stationary distribution α on {1,..., K} (Darroch and Seneta [2, 3]) :
 For every starting point x = 1,..., K,

$$\lim_{t \to +\infty} \mathbb{P}_{x} \Big(X^{(\kappa)}(t) \in A \mid \tau_{0} > t \Big) = \alpha(A) \,. \tag{2.3}$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ● ● ● ○ ○ 10/27

• There exists another probability π on $\{1, \ldots, K\}$, and a number $\theta > 0$, such that for any $x, y \in \{1, \ldots, K\}$:

$$\lim_{t \to +\infty} e^{-\theta t} \mathbb{P}_x \Big(X^{(K)}(t) = y \Big) = \pi_x \alpha_y ,$$
$$\lim_{t \to +\infty} e^{-\theta t} \mathbb{P}_x \Big(\tau_0^{(K)} > t \Big) = \pi_x .$$

- If t is large enough, then the deterministic approximation x(t) is close to its equilibrium value x_{eq} .
- If $t \ll 1/\theta$, then the quasi stationary distribution α will be concentrated on the equilibrium value x_{eq} .

• The reproduction number is given by

$$R_0 = \frac{\langle \beta \rangle}{\mu}, \quad \text{with} \quad \langle \beta \rangle = \frac{1}{T} \int_0^T \beta(s/T) \, ds = \int_0^1 \beta(u) \, du. \quad (3.1)$$

- If $R_0 < 1$
 - $\tau_0^{(K)}$ is stochastically dominated by the absorption time $\tau_0(Z^{(T,+)})$ of a linear birth-death process with birth rate $t \to \beta(t/T)$ and death rate μ .
- If $R_0 > 1$ the behavior depends strongly on the length of period T

(ロ) (同) (目) (目) (日) (の)

Theorem

When $T \to 0$, the process $X^{(K,T)}$ converges in distribution to the process $\bar{X}^{(K)}$, for Skorokhod topology on the space $D([0,\infty[)$ of cadlag processes defined on $[0,\infty[$.

Corollary

When $T \to 0$ the time of extinction of $X^{(K,T)}$ converges to the time of extinction of \bar{X}^{K} . In consequence, when $R_0 = \langle \beta \rangle / \mu > 1$, this time is exponential in the carrying capacity K.

Figure: Periodic quasistationnary distribution and Homogenization. Parameters set: There is 1 infected individual introduced for all processes, carrying capacity K = 100, T = 0.2, $\beta(t/T) = \beta_0 \mathbb{1}_{(0 \le t/T \le 1-\gamma)}$, $\beta_0 = 4.0$, $\gamma = 0.3$, $\mu = 1$.

Figure: Periodic quasistationary distribution and Homogenization. Parameters set: $K = 100, T = 0.2. \ \beta(t) = \beta_0 (1 - \gamma), \ \beta_0 = 4.0, \ \gamma = 0.3, \ \mu = 1.$

Van Hai KHONG

We restrict ourselves to step transmission functions

$$t \to \beta(t/T) = \beta_0 \mathbb{1}_{(0 \le \frac{t}{T} \le 1 - \gamma)} \qquad (t \in [0, T]), \qquad (3.2)$$

with $\gamma \in (0, 1)$ and $\beta_0 > \mu$.

• The take-off probability: if $t_0 \in (t_c^{\mathcal{K}}, 1-\gamma)$

$$\mathbb{P}\left(\text{take off} \mid X(t_0 T) = 1\right) \simeq \begin{cases} 1 - \frac{\mu}{\beta_0} & \text{if } 0 < t_0 < t_c^K \\ 0 & \text{if } t_0 > t_c^K \end{cases}.$$
(3.3)

where

$$t_c^{\kappa} = 1 - \gamma - \frac{\log \kappa}{T(\beta_0 - \mu)}$$
(3.4)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

• The probability of surviving the first period, conditionally on take-off is:

$$p_{per} \simeq 1 - (1 - e^{-\gamma \mu T})^{K_{x_{eq}}}$$
 (3.5)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

where x_{eq} the equilibrium value. Indeed:

- The probability that one infected individual alive at time (1 γ) T survives the winter period is $e^{-\gamma\mu T}$
- Conditionally on $X((1 \gamma)T) = M$ the probability that one individual survives the first period is $1 (1 e^{-\gamma\mu T})^M$
- We make the approximation $X((1-\gamma)T) \simeq K_{x_{eq}}((1-\gamma)T)$

Long period approximation

We can define a critical capacity as

$$\mathcal{K}_{C} = \frac{e^{\gamma \mu T}}{x_{eq}} \,. \tag{3.6}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

- If $K \ll K_C$, then $p_{per} \simeq 0$ and thus, even if there is a take off, with high probability the pathogen will not survive the first period.
- If K ≫ K_C, the pathogen survives is a geometric random variable of parameter 1 − p_{per},

$$\mathbb{E}\left[\tau_0^{(\mathcal{K},\mathcal{T})} \mid \text{take off}\right] \simeq \mathcal{T} \frac{1}{1 - \rho_{per}} \simeq \mathcal{T} (1 - e^{-\gamma \mu \mathcal{T}})^{-\mathcal{K}_{\mathsf{X}_{eq}}}.$$
(3.7)

 \Rightarrow The mean extinction time is thus exponential in the carrying capacity.

Long period approximation

Figure: The periodic attractor in deterministic and stochastic model. Parameter values : $\mu = 1, \gamma = 0.3, \beta_0 = 2, T = 20, \beta(t) = \beta_0 \mathbb{1}_{(0 \le \lfloor t/T \rfloor < 1-\gamma)}, X^{(K,T)}(0) = 10$, $x_0 = 0.1, K = 10^4, T = 20$.

• Let $\pi_G T, \pi_C T$ and $\pi_B T$: the **Good**, **Controlled** and **Bad** periods

$$\beta_{GCB} = \begin{cases} \beta_{G} & 0 \le t/T < \pi_{G} \\ \beta_{C} & \pi_{G} \le t/T < \pi_{G} + \pi_{C} , \beta_{CGB} \\ 0 & \pi_{G} + \pi_{C} \le t/T < 1 \end{cases} \begin{cases} \beta_{C} & 0 \le t/T < \pi_{C} \\ \beta_{G} & \pi_{C} \le t/T < \pi_{G} + \pi_{C} \\ 0 & \pi_{G} + \pi_{C} \le t/T < 1 \\ (4.1) \end{cases}$$

• The risk is defined as the probability that a pathogen introduced randomly in the first period [0, *T*] manages to survive the first period :

$$r = \frac{1}{T} \int_0^T p_1(t_0) dt_0 = \int_0^1 p_1(t_0 T) dt_0, \qquad (4.2)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

with $p_1(t_0 T) = \mathbb{P}(X^{(K,T)}(T) > 0 \mid X^{(K,T)}(t_0 T) = 1).$

Heuristics for large periods

First case : weak control : $\beta_C > \mu$.

$$r_{GCB} \simeq (\pi_G (1 - \mu/\beta_G) + \pi_C (1 - \mu/\beta_C)) \left(1 - (1 - e^{-\pi_B \mu T})^{K(1 - \mu/\beta_C)} \right)$$
(4.3)

۲

$$r_{CGB} \simeq (\pi_G (1 - \mu/\beta_G) + \pi_C (1 - \mu/\beta_C)) \Big(1 - (1 - e^{-\pi_B \mu T})^{K(1 - \mu/\beta_G)} \Big)$$
(4.4)

Therefore, since $\beta_C < \beta_G$, we have for the approximations $r_{CGB} > r_{GCB}$. \Rightarrow The strategy GCB is better than the strategy CGB. This is confirmed by the simulations, see Figure 4.

◆母> < E> < E> E のQC

Figure: Weak Control : The risk as a function of the capacity K of the environment Parameters : $\beta_G = 5$, $\beta_C = 2$, $\mu = 0.5$, T = 20, $\pi_G = \pi_C = 0.3$, $\pi_B = 0.4$.

・ロト ・ 日 ・ モ ・ モ ・ ・ 日 ・ つ へ ()・

۲

Second case : strong control: $\beta_C < \mu$.

$$\mathbf{r_{GCB}} \simeq \pi_{G} (1 - \mu/\beta_{G}) \Big(1 - (1 - \mathbf{p_{GCB}})^{\mathcal{K}(1 - \mu/\beta_{G})} \Big)$$
(4.5)

$$r_{CGB} \simeq \pi_G (1 - \mu/\beta_G) \Big(1 - (1 - p_{CGB})^{K(1 - \mu/\beta_G)} \Big)$$

$$(4.6)$$

• The probability of survival time t for a birth death process with birth rate $\lambda(s)$ and death rate $\mu(s)$ is given by

$$\mathbb{P}(X(t) > 0 | X(0) = 1) = \left(1 + \int_0^t \mu(s) e^{-\varphi(s) \, ds}\right)^{-1}$$
(4.7)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

with $\varphi(t) = \int_0^t (\lambda(s) - \mu(s)) ds.$ $\Rightarrow r_{GCB} < r_{GBC}$

Therefore GCB is better than CGB (see Figure 5).

Figure: Strong control : The risk as a function of the capacity K of the environment Parameters : $\beta_G = 4$, $\beta_C = 0.2$, $\mu = 0.5$, T = 20, $\pi_G = \pi_C = 0.3$, $\pi_B = 0.4$.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Comparison with the branching process (no density dependence)

• Risk of pathogen emergence is well approximated by

$$\tilde{r} = \int_0^1 \left(1 - \frac{\mu}{\beta(t)}\right) \mathbb{1}_{\{t \notin WIC\}} dt, \quad \text{with } WIC = \{t : \exists s > t, \varphi(s) > \varphi(t)\}$$

$$(4.8)$$

$$\tilde{r}_{GCB} < \tilde{r}_{CGB} \tag{4.9}$$

・ロト ・日・ ・日・ ・日・ ・日・

24/27

Therefore, as in the density dependent case, it is better to act just before the winter (Figure 4).

•
$$\beta_G > \mu > \beta_G$$
,
 $\tilde{r}_{GCB} = \tilde{r}_{CGB} = \frac{\varphi(1)}{\beta_G}$ (4.10)

Figure: Risk for branching process with weak control : GCB vs CGB. The integrated rate is drawn in black for strategy GCB and in blue for strategy CGB (25/ CGB) (2

Van Hai KHONG

Timing infectious disease control to minimize the risk (25 / 27

Reference

- Hå kan Andersson and Boualem Djehiche. A threshold limit theorem for the stochastic logistic epidemic. J. Appl. Probab., 35(3):662-670, 1998. ISSN 0021-9002. doi: 10.1239/jap/1032265214. URL https://doi.org/10.1239/jap/1032265214.
- J. N. Darroch and E. Seneta. On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J. Appl. Probability, 2:88–100, 1965. ISSN 0021-9002. doi: 10.2307/3211876. URL https://doi.org/10.2307/3211876.
- J. N. Darroch and E. Seneta. On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J. Appl. Probability, 4:192–196, 1967. ISSN 0021-9002. doi: 10.2307/3212311. URL https://doi.org/10.2307/3212311.
- [4] Thomas G. Kurtz. Strong approximation theorems for density dependent Markov chains. *Stochastic Processes Appl.*, 6(3):223-240, 1977/78. ISSN 0304-4149. doi: 10.1016/0304-4149(78)90020-0. URL https://doi.org/10.1016/0304-4149(78)90020-0.

Thanks for listening!

< □ > < ⑦ > < ≧ > < ≧ > ≧ · の Q @ 27/27