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Motivation

Infectious diseases have been a significant challenge throughout human
history, causing widespread outbreaks and devastating consequences.

However, advancements in modeling techniques have allowed us to better
understand and predict disease trends, leading to more effective strategies for
minimizing their impact
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Journée de Probabilité, Anger, 19-23 June 2023

2 / 27



3/27

Outline

1 Introduction

2 The constant case

3 The periodic case
Short period approximation
Long period approximation

4 The optimal timing of disease control strategies
Heuristics for large periods
Comparison with the branching process (no density dependence)

5 Reference

Van Hai KHONG Timing infectious disease control to minimize the risk of pathogen emergence
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Introduction
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The question:
What is the best time to take action to reduce the risk of pathogens ?
The answer:
The best time to control the pathogen is at the end of a favorable period.
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Introduction

We consider the deterministic SI model

dS

dt
= λ− β(t)

SI

S + I
− µS (1.1)

dI

dt
= β(t)

SI

S + I
− µI (1.2)

where

S(t), I (t) are susceptible and infected individual in population ,

β(t) is transition rate,

λ the recruitment rate,

µ death rate.
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The stochastic model

The stochastic dynamics is described by the transitions:

X (K) → X (K) + 1 with rate β(t)X (K)(t)

(
1− X (K)(t)

K

)
(1.3)

X (K) → X (K) − 1 with rate µX (K)(t) (1.4)

where:

K the capacity: the maximal host population

X (K)(t) the number of infected host at time t

S (K)(t) = K − X (K)(t) the number of susceptible host.
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Theorem (Law of large numbers (Kurtz [4]))

Fixed T > 0, if x(t) = (s(t), i(t)) solution of the dynamic system:
ṡ = λ− µs − β

si

s + i

i̇ = β
si

s + i
− µi .

(1.5)

with initial condition if x0 ∈ R and in probability

lim
K→∞

X (K)(0)

K
= x0,

then for every ϵ > 0,

lim
K→+∞

P

(
sup
t≤T

∣∣∣∣XK (t)

K
− x(t)

∣∣∣∣ > ϵ

)
= 0 (1.6)
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The constant case

The constant case:

The reproductive number R0 =
β

µ

The extinction time τ
(K)
0 = inf

{
t > 0 : X (K)(t) = 0

}

If R0 < 1

τ
(K)
0 is stochastically dominated by an exponential random variable of
parameter µ− β.
⇒ The expected time to extinction is at most equal to 1

µ−β
.
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The constant case

If R0 > 1

The take off probability: for large capacity K , the pathogen reaches a fixed
proportion x0K with 0 < x0 < 1 is

P
(
X (K) takes off

)
∼ 1− µ

β
. (2.1)

We assume that X (K)(0)
K

→ x0 ∈ (0, 1). Andersson and Djehiche [1] proved that
the mean extinction time of this process is exponential in the capacity K :

E
[
τ
(K)
0

]
∼

√
2π

K

R0

(R0 − 1)2
eKV0 , with V0 = lnR0 − 1 +

1

R0
> 0 . (2.2) {eq:andjehiche}{eq:andjehiche}
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Quasi stationary distribution in the constant case

There exists a quasi stationary distribution α on {1, . . . ,K} (Darroch and
Seneta [2, 3]) :
For every starting point x = 1, . . . ,K ,

lim
t→+∞

Px

(
X (K)(t) ∈ A | τ0 > t

)
= α(A) . (2.3)

There exists another probability π on {1, . . . ,K}, and a number θ > 0, such
that for any x , y ∈ {1, . . . ,K}:

lim
t→+∞

e−θtPx

(
X (K)(t) = y

)
= πxαy ,

lim
t→+∞

e−θtPx

(
τ
(K)
0 > t

)
= πx .

If t is large enough, then the deterministic approximation x(t) is close to its
equilibrium value xeq.

If t << 1/θ, then the quasi stationary distribution α will be concentrated on
the equilibrium value xeq.
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The periodic case

The reproduction number is given by

R0 =
⟨β⟩
µ

, with ⟨β⟩ = 1

T

∫ T

0

β(s/T ) ds =

∫ 1

0

β(u) du . (3.1)

If R0 < 1

τ
(K)
0 is stochastically dominated by the absorption time τ0(Z

(T ,+)) of a linear
birth-death process with birth rate t → β(t/T ) and death rate µ.

If R0 > 1 the behavior depends strongly on the length of period T
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Short period approximation

Theorem
{thm:homogeneisation}

When T → 0, the process X (K ,T ) converges in distribution to the process X̄ (K),
for Skorokhod topology on the space D([0,∞[) of cadlag processes defined on
[0,∞[.

Corollary

When T → 0 the time of extinction of X (K ,T ) converges to the time of extinction
of X̄K . In consequence, when R0 = ⟨β⟩/µ > 1, this time is exponential in the
carrying capacity K.
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Figure: Periodic quasistationnary distribution and Homogenization. Parameters set:
There is 1 infected individual introduced for all processes, carrying capacity K = 100,
T = 0.2, β(t/T ) = β0 1(0≤t/T≤1−γ), β0 = 4.0, γ = 0.3, µ = 1.

{fig:peri-quas-distr}
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Figure: Periodic quasistationary distribution and Homogenization. Parameters set:
K = 100,T = 0.2. β(t) = β0 (1− γ), β0 = 4.0, γ = 0.3, µ = 1.

{fig:peri-quas-distr}
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Long period approximation

We restrict ourselves to step transmission functions

t → β(t/T ) = β0 1(0≤ t
T ≤1−γ) (t ∈ [0,T ]) , (3.2)

with γ ∈ (0, 1) and β0 > µ.

The take-off probability: if t0 ∈ (tKc , 1− γ)

P (take off | X (t0T ) = 1) ≃

{
1− µ

β0
if 0 < t0 < tKc .

0 if t0 > tKc .
(3.3)

where

tKc = 1− γ − logK

T (β0 − µ)
(3.4)
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Long period approximation

The probability of surviving the first period, conditionally on take-off is:

pper ≃ 1− (1− e−γµT )Kxeq . (3.5)

where xeq the equilibrium value.
Indeed:

The probability that one infected individual alive at time (1− γ)T survives
the winter period is e−γµT

Conditionally on X ((1− γ)T ) = M the probability that one individual survives

the first period is 1−
(
1− e−γµT

)M
We make the approximation X ((1− γ)T ) ≃ Kxeq ((1− γ)T )

Van Hai KHONG Timing infectious disease control to minimize the risk of pathogen emergence
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Long period approximation

We can define a critical capacity as

KC =
eγµT

xeq
. (3.6)

If K ≪ KC , then pper ≃ 0 and thus, even if there is a take off, with high
probability the pathogen will not survive the first period.

If K ≫ KC , the pathogen survives is a geometric random variable of
parameter 1− pper ,

E
[
τ
(K ,T )
0 | take off

]
≃ T

1

1− pper
≃ T (1− e−γµT )−Kxeq . (3.7)

⇒ The mean extinction time is thus exponential in the carrying capacity.
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Long period approximation
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Figure: The periodic attractor in deterministic and stochastic model. Parameter
values : µ = 1, γ = 0.3, β0 = 2,T = 20, β(t) = β01(0≤⌊t/T⌋<1−γ), X

(K ,T )(0) = 10 ,
x0 = 0.1, K = 104, T = 20.

{fig:yaglomperiodicbis}
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The optimal timing of disease control strategies

Let πGT , πCT and πBT : the Good, Controlled and Bad periods

βGCB =


βG 0 ≤ t/T < πG

βC πG ≤ t/T < πG + πC

0 πG + πC ≤ t/T < 1

, βCGB =


βC 0 ≤ t/T < πC

βG πC ≤ t/T < πG + πC

0 πG + πC ≤ t/T < 1

(4.1)

The risk is defined as the probability that a pathogen introduced randomly in
the first period [0,T ] manages to survive the first period :

r =
1

T

∫ T

0

p1(t0) dt0 =

∫ 1

0

p1(t0T )dt0 , (4.2)

with p1(t0T ) = P
(
X (K ,T )(T ) > 0 | X (K ,T )(t0T ) = 1

)
.
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Heuristics for large periods

First case : weak control : βC > µ.

rGCB ≃ (πG (1− µ/βG ) + πC (1− µ/βC ))
(
1− (1− e−πBµT )K(1−µ/βC )

)
(4.3) {eq:heuristicweakgcb}{eq:heuristicweakgcb}

rCGB ≃ (πG (1− µ/βG ) + πC (1− µ/βC ))
(
1− (1− e−πBµT )K(1−µ/βG )

)
(4.4) {eq:heuristicweakcgb}{eq:heuristicweakcgb}

Therefore, since βC < βG , we have for the approximations rCGB > rGCB .
⇒ The strategy GCB is better than the strategy CGB. This is confirmed by the
simulations, see Figure 4.
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Figure: Weak Control : The risk as a function of the capacity K of the environment
Parameters : βG = 5, βC = 2, µ = 0.5, T = 20, πG = πC = 0.3, πB = 0.4.

{fig:strategycontrolledsummer}
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Heuristics for large periods

Second case : strong control: βC < µ.

rGCB ≃ πG (1− µ/βG )
(
1− (1− pGCB)

K(1−µ/βG )
)

(4.5)

rCGB ≃ πG (1− µ/βG )
(
1− (1− pCGB)

K(1−µ/βG )
)

(4.6)

The probability of survival time t for a birth death process with birth rate
λ(s) and death rate µ(s) is given by

P (X (t) > 0|X (0) = 1) =

(
1 +

∫ t

0

µ(s)e−φ(s) ds

)−1

(4.7)

with φ(t) =
∫ t

0
(λ(s)− µ(s)) ds.

⇒ rGCB < rGBC

Therefore GCB is better than CGB (see Figure 5).
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Figure: Strong control : The risk as a function of the capacity K of the environment
Parameters : βG = 4, βC = 0.2, µ = 0.5, T = 20,πG = πC = 0.3, πB = 0.4.

{fig:strategycontrolledwinter}

Van Hai KHONG Timing infectious disease control to minimize the risk of pathogen emergence
Journée de Probabilité, Anger, 19-23 June 2023

23 / 27



24/27

Comparison with the branching process (no density
dependence)

Risk of pathogen emergence is well approximated by

r̃ =

∫ 1

0

(1− µ

β(t)
)1(t /∈WIC)dt, with WIC = {t : ∃s > t, φ(s) > φ(t)}

(4.8)

βG > βC > µ,
r̃GCB < r̃CGB (4.9) {eq:lbdweak}{eq:lbdweak}

Therefore, as in the density dependent case, it is better to act just before the
winter (Figure 4).

βG > µ > βG ,

r̃GCB = r̃CGB =
φ(1)

βG
(4.10) {eq:lbdstrong}{eq:lbdstrong}
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Figure: Risk for branching process with weak control : GCB vs CGB. The integrated
rate is drawn in black for strategy GCB and in blue for strategy CGB
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Thanks for listening!
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