On the associated martingale for a multitype branching process in random environment

Thi Trang Nguyen¹

joint work with Quansheng Liu¹, Ion Grama¹

¹Laboratory of Mathematics of Atlantic Brittany (LMBA, UMR CNRS 6205) University of South Brittany, France

Talk at the conference "2023 Probability Days " Angers, June 19-23

What is the talk about

1 With a branching process in random environment (with one type on particles) (Z_n) one can associate a martingale which is used to show that (under assumptions) the size of the population exploses:

$$Z_n \simeq m_1 \ldots m_n.$$

where m_k are the quenched reproduction means. For fixed deterministic environment (:= no environment) this simply reads

 $Z_n \simeq m^n$.

- A similar result holds for a multitype branching process (without environment = fixed deterministic environment). This is the famous Kesten-Stigum theorem.
- However, until recently there was no completely satisfactory analog of this property in the case of a multitype branching process in random environment. Previous results: Cohn (1989), Jones (1997) [L²-convergence of Zⁱ_n(j)], Biggins, Cohn, Nerman (1999) [in L^P], Le Page, Peigné, Pham (2019).

5

Our contribution

- The main difficulty is the construction of the associated martingale, which is the main tool in establishing the K-S theorem.
- Our goal is to complement on the construction of this martingale in G.-Liu-Pin, AAP 2023, by considering a triangular array of martingales and by showing the convergence of its terminal values.
- Usefulness: this construction is used to prove the Berry-Esseen theorem, to establish Moderate deviations, and with the last developments also a precise Large deviation asymptotic (in progress).
- The construction of the associated martingale is related to a "new" version of the Perron-Frobenius theorem for products of random matrices.

Outline

- Start with the case of 1 type of particles.
- 2) Then we will pass to multitype case: Kesten-Stigum theorem.
- We will state a Perron-Frobenius theorem for products of random matrices, construct the martingale and state an analog of the K-S theorem.

Single-type BP

Consider a single type branching process in random environment:

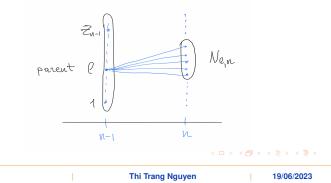
$$Z_0 = 1, \quad Z_n = \sum_{l=1}^{2n-1} N_{l,n}, \quad n = 1, 2, \dots$$

• $N_{I,n}$ is the number of children generated by the parent *I* in generation n-1

 $N_{1,n}, N_{2,n}, ...$ are i.i.d. with p.g.f. $f_n(s) = f_{\xi_n}(s)$.

• The environment sequence $\xi = (\xi_0, \xi_1, ...)$ is i.i.d.

MBPRE



5 / 26

The martingale for single-type BP

The reproduction mean in generation n is denoted by

$$m_n = m(\xi_n) = \mathbb{E}_{\xi_n} N_{l,n} = \frac{\partial}{\partial s} f_{\xi_n}(1).$$

This is a sequence of i.i.d. random variables depending only on ξ .

2 The following process is a martingale

$$W_0 = 1, \quad W_n = \frac{Z_n}{m_1 \dots m_n}, \quad n \ge 1. \qquad \left(W_n = \frac{Z_n}{m^n}\right)$$

with respect to the quenched measure \mathbb{P}_{ξ} and the filtration

$$\mathscr{F}_{\boldsymbol{n}} = \sigma\{\xi, \boldsymbol{N}_{l,k}, \ \boldsymbol{k} \leqslant \boldsymbol{n}, \ \forall l\},\$$

Proof: Use the simple fact that $\mathbb{E}(Z_n | \mathscr{F}_{n-1}) = Z_{n-1} m_n$.

MBPRE

5

Thi Trang Nguyen

Multitype branching process

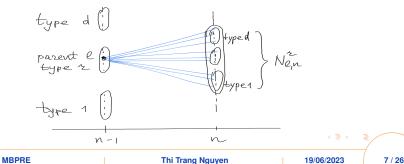
S

Consider a branching process with *d* types of particles (no environment):

$$Z_n = (Z_n(1), \ldots, Z_n(d)), \quad Z_n = \sum_{r=1}^d \sum_{l=1}^{Z_{n-1}} N_{l,n}^r, \quad n = 1, 2, \ldots,$$

- $N_{l,n}^r$ is the row-vector of children ($\sqrt[r]{f}$ all \overline{t} ypes) generated by the parent *l* of type *r* in generation n 1:
- the sequence $N_{1,n}^r, N_{2,n}^r, \dots$ is i.i.d. and independent of the past

$$\mathscr{F}_{n-1} = \sigma\{N_{1,n-1}^r, N_{2,n-1}^r, \ldots\}.$$



Matrix of the means

With a constant deterministic environment, the mean number of born children is a (constant non-random) matrix *M*, whose entries

$$M(r,j) = \mathbb{E} N_{l,n}^{r}(j)$$

are the mean production of children of type j by any parent of type r.

2 In an i.i.d. random environment $\xi = (\xi_0, \xi_1, ...)$ we will have matrices (M_n) changing with *n*:

$$M_n(r,j) = \mathbb{E} \left(N_{l,n}^r(j) | \xi \right) = \mathbb{E} \left(N_{l,n}^r(j) | \xi_n \right)$$

each depending on the environment variable ξ_n .

- Since the sequence (ξ_n) is i.i.d. it follows that the sequence of matrices (M_n) is also i.i.d.

Kesten-Stigum theorem

Consider a MBP (no environment). The (non-random) mean matrix *M* is assumed to be primitive ($M^k > 0$ for some $k \ge 1$).

- Let ρ be the spectral radius of *M* which is dominating eigenvalue of multiplicity 1.
- By the Perron-Frobenius theorem, there exist unique u > 0 and v > 0 which are the right and left row-eigenvectors of M, that is

$$Mu^T = \rho u^T$$
, $vM = \rho v$, with $||u|| = 1$, $\langle v, u \rangle = 1$.

Theorem (Kesten-Stigum 1966)

1 Part 1: for any $1 \le i, j \le d$ it holds, with some r.v. $W^i \ge 0$,

$$\frac{Z_n^i(j)}{\rho^n u(i)v(j)} \to W^i \quad \mathbb{P}\text{-a.s. as } n \to \infty. \tag{1}$$

2 Part 2: the limits W^i are non degenerate for all $1 \le i \le d \Leftrightarrow \mathbb{E}Z_1^i(j) \log^+ Z_1^i(j) < \infty$, for all $1 \le i, j \le d$.

Notation: Z_n^i means that the BP starts with 1 particle of type *i*.

Equivalent formulation

1 In addidtion to the previous the Perron-Frobenius theorem tells that $\lim_{n\to\infty} \frac{1}{\rho^n} M^n = u \otimes v$; in the component form becomes:

 $M^n(i,j) \sim \rho^n u(i) v(j)$, for any $1 \leq i, j \leq d$.

2 Then Part 1 of the K-S theorem (on previous slide) is equivalent to:

$$\frac{Z_n^i(j)}{\mathbb{E}_{\xi}Z_n^i(j)} = \frac{Z_n^i(j)}{M^n(i,j)} \to W^i \quad \mathbb{P}\text{-a.s. as } n \to \infty.$$
(2)

The relation (2) is an analog of the convergence stated for the BP with 1 type of particles. It can be rewritten (with $x = e_i$, $y = e_j$):

$$\frac{\langle Z_n^x, y \rangle}{\langle x \ M^n, y \rangle} \to W^x. \tag{3}$$

3 Note that $\frac{Z_n^i(j)}{M^n(i,j)}$, $n \ge 0$ is not a martingale as in the case d = 1. MBPRE Thi Trang Nguyen 19/06/2023 10/26

The associated martingale

1 The K-S theorem is based on the following martingale: for $n \ge 0$,

$$W_n = \frac{\langle Z_n^i, u \rangle}{\rho^n u(i)} = \frac{\langle Z_n^{e_i}, u \rangle}{\langle e_i M^n, u \rangle}, \quad n \ge 0,$$

which converges \mathbb{P}_{ξ} -a.s. to W^{i} .

(Recall: *u* is the right eigenvector of *M*: $Mu^T = \rho u^T$).

2 Proof. We use the simple property: $E_{\xi}(Z_n|\mathscr{F}_{n-1}) = Z_{n-1}M$. Thus

$$\begin{split} \mathbb{E}_{\xi} \left(W_{n} | \mathscr{F}_{n-1} \right) &= \frac{\langle \mathbb{E}_{\xi} \left(Z_{n}^{e_{i}} | \mathscr{F}_{n-1} \right), u \rangle}{\langle e_{i} M^{n}, u \rangle} \\ &= \frac{\langle Z_{n-1}^{e_{i}} M, u \rangle}{\langle e_{i} M^{n}, u \rangle} = \frac{\langle Z_{n-1}^{e_{i}}, u M^{T} \rangle}{\langle e_{i} M^{n-1}, u M^{T} \rangle} = \frac{\rho \langle Z_{n-1}^{e_{i}}, u \rangle}{\rho \langle e_{i} M^{n-1}, u \rangle} \\ &= \frac{\langle Z_{n-1}^{e_{i}}, u \rangle}{\langle e_{i} M^{n-1}, u \rangle} = W_{n-1}. \end{split}$$

3 Recall: until recently there was no extension to the case of a multitype BP in random environment. Why?

MBPRE

S

Thi Trang Nguyen

19/06/2023

Martingale extension: naive attempt

- Recall that with a random environment, we have a sequence of i.i.d. matrices (M_n) .
- 2 By analogy with the K-S construction set: for any x, y

$$W_n^{\mathsf{x}}(\mathsf{y}) = \frac{\langle Z_n^{\mathsf{x}}, \mathsf{y} \rangle}{\langle \mathsf{x} M_1 \dots M_n, \mathsf{y} \rangle}, \quad n \ge 0.$$

Question: what we should choose for y?

3 Let $y = y_n$ where y_n is the right eigenvector of the matrix M_n : $y_n M_n^T = \rho_n y_n$. Then, using $E_{\xi} (Z_n^x | \mathscr{F}_{n-1}) = Z_{n-1}^x M_n$,

$$\mathbb{E}_{\xi} \left(W_{n}^{x}(y_{n}) | \mathscr{F}_{n-1} \right) = \frac{\langle E_{\xi} \left(Z_{n}^{x} | \mathscr{F}_{n-1} \right), y_{n} \rangle}{\langle x M_{1} \dots M_{n}, y_{n} \rangle}$$
$$= \frac{\langle Z_{n-1}^{x} M_{n}, y_{n} \rangle}{\langle x M_{1} \dots M_{n}, y_{n} \rangle} = \frac{\langle Z_{n-1}^{x}, y_{n} M_{n}^{T} \rangle}{\langle x M_{1} \dots M_{n-1}, y_{n} M_{n}^{T} \rangle}$$
$$= \frac{\rho_{n} \langle Z_{n-1}^{x}, y_{n} \rangle}{\rho_{n} \langle x M_{1} \dots M_{n-1}, y_{n} \rangle} = \frac{\langle Z_{n-1}^{x}, y_{n} \rangle}{\langle x M_{1} \dots M_{n-1}, y_{n} \rangle} \neq W_{n-1}.$$

To get a martingale we need the property $y_n M_n^T = \lambda_n y_{n-1}$. Dolgopyat, Hebbar, Koralov, Perlman (2018). [Seneta (1981)]

Recall the Perron-Frobenius theorem

Theorem

Assume that the matrix *M* has positive entries. Denote by $\rho = \rho(M)$ its spectral radius. Then

1 $\rho > 0$ and is an eigenvalue of the matrix *M*. Any other (possibly complex) eigenvalue in absolute value is strictly smaller than ρ . The eigenvalue ρ is simple and right and left eigenspaces associated with ρ are one-dimensional.

2 There exists a right eigenvector $\mathbf{u} > 0$ such that $\mathbf{Mu^T} = \rho \mathbf{u^T}$. There exists a left eigenvector $\mathbf{v} > 0$ such that $\mathbf{vM} = \rho \mathbf{v}$. The vectors \mathbf{u} and \mathbf{v} can be chosen uniquely in such a way that $\|\mathbf{u}\| = \mathbf{1}$ and $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{1}$.

③ In addition, it holds $\lim_{n\to\infty} \frac{1}{\rho^n} M^n = \mathbf{u} \otimes \mathbf{v}$, where the matrix $\mathbf{u} \otimes \mathbf{v}$ is the projection onto the subspace generated by \mathbf{u} .

These statements extend to a primitive *M*, i.e. $M \ge 0$ and $M^k > 0$ for some $k \ge 1$.

Perron-Frobenius theorem

• The point 3 of the previous theorem, i.e.

$$\lim_{n\to\infty}\frac{1}{\rho^n}M^n=\mathbf{u}\otimes\mathbf{v},$$

can we rewritten in the following equivalent way:

r

• for any $1 \leq i, j \leq d$,

$$\lim_{n\to\infty}\frac{\langle \boldsymbol{e}_i\,\boldsymbol{M}^n,\boldsymbol{e}_j\rangle}{\rho^n\langle\boldsymbol{u},\boldsymbol{e}_i\rangle\langle\boldsymbol{v},\boldsymbol{e}_j\rangle}=1,$$

• or, for any $x, y \in \mathbb{R}^d, x, y \neq 0$ (instead of e_i, e_j),

$$\lim_{n\to\infty}\frac{\langle x\,M^n,y\rangle}{\rho^n\langle u,x\rangle\langle v,y\rangle}=1.$$

A Perron-Frobenius theorem for random matrices

Consider the i.i.d. random matrices M_k indexed with $k \in \mathbb{Z}$.

Assume condition A1:

- **1** The matrices M_k satisfy $M_k \ge 0$ and are allowable (every row and every column contains a strictly positive entry).
- 2 The Hennion condition: $\mathbb{P}(\exists k \text{ such that } M_1 \dots M_k > 0) = 1.$

This is an analog of the condition " $M^k > 0$ for some $k \ge 0$ " ("*M* is primitive").

A Perron-Frobenius theorem for (M_n)

Theorem 1.

Assume A1 (allowability + Hennion condition):

1 There exists a stationary and ergodic sequence of vectors $u_n > 0$, $||u_n|| = 1$, $n \in \mathbb{Z}$:

$$u_{n+1} M_n^T = \lambda_n u_n, \qquad \lambda_n = \|M_n u_{n+1}\|.$$

2 There exists a stationary and ergodic sequence of vectors $v_n > 0$, $||v_n|| = 1$, $n \in \mathbb{Z}$:

$$\mathbf{v}_{n-1} \mathbf{M}_n = \mu_n \mathbf{v}_n, \qquad \mu_n = \|\mathbf{v}_{n-1} \mathbf{M}_n\|.$$

8 For any vectors x and y,

$$\lim_{n\to\infty}\frac{\langle x\,M_k\dots M_n,y\rangle}{d_{k,n}\langle u_k,x\rangle\langle v_n,y\rangle}=1,$$

where $d_{k,n} := \langle 1, 1M_k \dots M_n \rangle = \sum_{i,j} M(i,j)$.

Relation to eigenvectors

1 Let $\rho_{k,n}$, $u_{k,n}$ and $v_{k,n}$ be the spectral radius, the right and the left eigenvectors of the matrix $M_k \dots M_n$, i.e.

$$u_{k,n}(M_k\ldots M_n)^T = \rho_{k,n}u_{k,n}$$
 $v_{k,n}M_k\ldots M_n = \rho_{k,n}v_{k,n}$

with constraints $||u_{k,n}|| = 1$ and $\langle u_{k,n}, v_{k,n} \rangle = 1$. We have a.s.

$$\lim_{n\to\infty} u_{k,n} = u_k, \qquad \lim_{k\to-\infty} \frac{v_{k,n}}{\|v_{k,n}\|} = v_n.$$
(4)

2 Comparison with Hennion (1997) result: as $n \to \infty$ the convergence for v_n holds only in law: for fixed k

$$\overline{v}_{k,n} := \frac{v_{k,n}}{\|v_{k,n}\|} \xrightarrow{d} v_k \qquad \Leftarrow \left(\frac{\langle \overline{v}_{k,n}, y \rangle}{\langle v_n, y \rangle} \to 1 \text{ a.s. unif.} \forall y \neq 0.\right)$$

S

Associated martingale for MBPRE

(1 Using the sequence $y_n = u_{n+1}$, where $u_n > 0$, $n \in \mathbb{Z}$ is stationary and ergodic and satisfies $M_n u_{n+1}^T = \lambda_n u_n^T$ and $||u_n|| = 1$, we obtain

Theorem 2

S

Under A1 (allowability + Hennion condition), the sequence

$$\mathcal{W}_{n}^{x}(u_{n+1}) = \frac{\langle Z_{n}^{x}, u_{n+1} \rangle}{\langle x M_{1} \dots M_{n}, u_{n+1} \rangle}$$

is a positive martingale.

By the martingale convergence theorem there exist the following limit

$$W_n^x(u_{n+1}) = \frac{\langle Z_n^x, u_{n+1} \rangle}{\langle x M_1 \dots M_n, u_{n+1} \rangle} \to W^x,$$

where $W^{\chi} \ge 0$. We shall discuss its non-degeneracy below.

③ We still need to show a relation between $W_n^x(u_{n+1})$ and the quantity we are interested in $W_n^x(y) = \frac{\langle Z_n^x, y \rangle}{\langle xM_1...M_n, y \rangle}$.

A triangular array of martingales

1 Again using the property $E_{\xi}(Z_n | \mathscr{F}_{n-1}) = Z_{n-1} M_n$ we can easily check that, for any $n \ge 0$ and any x, y,

$$\mathcal{M}_{n,k}^{x}(y) = \frac{\langle Z_{k}^{x} M_{k+1} \dots M_{n}, y \rangle}{\langle x M_{1} \dots M_{n}, y \rangle}, \ k = 0, \dots, n$$

is a triangular array of finite time $\mathbb{P}_{\xi}\text{-martingales}.$

$$W_{00}^{x}(y) = W_{11}^{x}(y) = W_{20}^{x}(y) = W_{21}^{x}(y) = W_{22}^{x}(y) = W_{21}^{x}(y) = W_{22}^{x}(y) = W_{10}^{x}(y) = W_{10}^{x}(y$$

2 Its terminal values are exactly the quantities of interest:

$$W_{n,n}^{x}(y) = W_{n}^{x}(y) = \frac{\langle Z_{n}^{x}, y \rangle}{\langle x M_{1} \dots M_{n}, y \rangle}$$

S

Kesten-Stigum theorem

Theorem 3:

1) Assume: A1 (allowability + Hennion condition), A2 ($\mathbb{E} \log^+ ||M_0|| < +\infty$).

Then
$$\lim_{n \to \infty} \frac{W_n^x(y)}{W_n^x(u_{n+1})} = 1, \text{ in probability } \mathbb{P}, \quad \forall x, y.$$
(5)

conditioned on the explosion event $E^x = {\lim_{n \to \infty} Z_n^x = \infty}$.

2 As a consequence, for any x and y, as $n \to \infty$,

$$W_n^x(y) = \frac{\langle Z_n^x, y \rangle}{\langle x M_1 \dots M_n, y \rangle} \to W^x, \quad \text{in probability } \mathbb{P}, \qquad (6)$$

where W^x is the limit of the martingale $(W_n^x(u_{n+1}))_{n \ge 0}$.

This is the analog of the Part 1 of the Kesten-Stigum theorem (convergence to a limit).

The convergence is in probability only (since we have a triangular array of martingales). For the a.s. convergence we need some additional conditions. (a + b + c) + (a + b) +

K-S theorem: a.s. convergence

• Assume additionally that for some p > 1 and for all $1 \le r \le d$,

$$\mathbb{E}\sup_{\boldsymbol{y}\in\mathbb{R}^{d}_{+}\setminus\{\boldsymbol{0}\}}\left(\frac{\langle \boldsymbol{Z}_{1}^{r},\boldsymbol{y}\rangle}{\langle \boldsymbol{e}_{r}\boldsymbol{M}_{1},\boldsymbol{y}\rangle}\right)^{\boldsymbol{\rho}}<+\infty$$
(7)

and

$$\mathbb{E}\|M_1\|^{1-\rho} < +\infty, \tag{8}$$

Then , for any *x* and *y*, as $n \to \infty$, the convergence in the above theorem is \mathbb{P} -a.s.

MBPRE

Thi Trang Nguyen

19/06/2023 21 / 26

Non-degeneracy for supercritical MBPRE's

- We prove the non-degeneracy of W^x for a supercritical MBPRE. What is definition of the supercriticality ?
- 2 The following strong law of large numbers has been established by Furstenberg and Kesten 1960: under A2 ($\mathbb{E} \log^+ ||M_1|| < +\infty$),

$$\lim_{n\to+\infty}\frac{1}{n}\log\|M_1\dots M_n\|=\gamma\quad \mathbb{P}\text{-a.s.}$$

One classification of MBPRE's:

Definition

S

We say that $(Z_n)_{n \ge 0}$ is: subcritical if $\gamma < 0$; critical if $\gamma = 0$; supercritical if $\gamma > 0$.

This def. sticks with the definition for a single-type BP.

MBPRE

Thi Trang Nguyen

19/06/2023

Non-degeneracy of W^x

- In the following we consider supercritical MBPRE's: γ > 0.
 We give a sufficient condition for the non-degeneracy of W^x.
- Condition H2: For all $1 \leq r \leq d$,

$$\mathbb{E}\left(\frac{\langle N_{1,1}^{r}, u_{1}\rangle}{\lambda_{1}\langle u_{1}, e_{r}\rangle}\log^{+}\langle N_{1,1}^{r}, u_{1}\rangle\right) < +\infty.$$
(9)

Theorem 3:

Assume: A1(allowability + Hennion condition), A2 ($\mathbb{E} \log^+ ||M_1|| < +\infty$), $\gamma > 0$ (supercritical).

1 Then H2 is a sufficient condition for W^x to be non-degenerate $\forall x$.

2 Furthermore, when W^x , for $\forall x \neq 0$ are non-degenerate, we have $\mathbb{E}_{\xi}W^x = 1$ for $\forall x \neq 0$, \mathbb{P} -a.s.

Necessary and sufficient condition

We need stronger conditions:

- (F-K) The Furstenberg-Kesten condition: $\frac{\max_{i,j}M_1(i,j)}{\min_{i,j}M_1(i,j)} \leq C$
- Condition H3: For all $1 \leq r \leq d$, For all $1 \leq r, j \leq d$,

$$\mathbb{E}\left[\frac{N_{1,1}^{r}(j)}{\langle e_{r}M_{1}, e_{j}\rangle}\log^{+}\frac{N_{1,1}^{r}(j)}{\langle e_{r}M_{1}, e_{j}\rangle}\right]<+\infty.$$

Theorem 5:

S

Assume: F-K, A2 ($\mathbb{E} \log^+ ||M_1|| < +\infty$), $\gamma > 0$ (supercritical).

1 Then H3 is a necessary and sufficient condition for W^x to be non-degenerate $\forall x$.

2 Furthermore, when W^x , for $\forall x \neq 0$ are non-degenerate, we have $\mathbb{E}_{\xi}W^x = 1$ for $\forall x \neq 0$, \mathbb{P} -a.s.

Proof: we use the method based on size biased tree by Lyons, Permantle and Peres (1995) [Bigging and Kyprianou (2004)].

MBPRE

Thi Trang Nguyen

19/06/2023

Grama I., Liu Q., Miqueu E., Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment, Stochastic Process. Appl., 127, 1255-1281, 2017.

Grama I., Liu Q., Pin E., Convergence in L^p for a supercritical multi-type branching process in a random environment, Proceedings of the Steklov Mathematical Institute, 316, 169-194, 2022,

Grama I., Liu Q., Pin E., A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment, Annals Appl. Probab. 33(2), 1013-1051, 2023.

Grama I., Liu Q., Pin E., Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments, Preprint.

Grama I., Liu Q., Pin E., Cramér type moderate deviation expansion for supercritical multi-type branching processes in random environments, Preprint.

Thank you !!!

MBPRE