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Duality of Markov processes with respect to a function:
Useful tool in queuing theory, random walks with reflecting / absorbing
barriers, mathematical population genetics, interacting particle systems . . .

Basic idea:
In order to understand long-time behavior of complicated process, follow
simpler process backwards in time.

In interacting particle systems:
often duality allows to map study of k-point correlation function of
many-particle system to time evolution of a system with k particles.
Holley, Stroock ’79; Liggett’s book on interacting particle systems.



Duality vs. intertwining

Process – state space – semigroup

(Xt)t≥0, E , (Pt)t≥0, (Yt)t≥0, F , (Qt)t≥0.

Dual with duality function H : E × F → R:

Ex

[
H(Xt , y)

]
= Ey[H(x ,Yt)

]
for all x , y , t.

Lévy ’48: Brownian motion on half-line absorbed / reflected at 0, H(x, y) = 1l{x≤y}.

Kernel K(x , dy) is an intertwiner if∫
Pt(x , dx

′)K(x ′,B) =

∫
K(x ,dy)Qt(y ,B) (B ⊂ F ).

Duality & reversible measure µ → intertwiner

K(x, dy) = H(x, y)µ(dy).



The question

Franceschini, Giardinà 2018; Redig, Sau 2018

Several interacting particle systems on Zd have factorized reversible measures ν

on NZd

0 ,
ν = ⊗x∈Zd νx

νx = measure on N0, in shift-invariant setting: νx ≡ ν0.

Often self-duality functions of product form

D(n,m) =
∏
x∈Zd

D0(nx ,mx)

with single-site function

D0(n,m) =
Pn(m)

ν0(m)
,

(Pn)n∈N discrete orthogonal polynomials, orthogonality w.r.t. ν0.

What happens for Rd instead of Zd?



Overview

1. Consistent processes

2. Intertwining with Lenard’s K -transform

3. Intertwining with orthogonal polynomials

4. Example: Symmetric inclusion process & Meixner polynomials



Consistency: labelled particles

Markov dynamics for finitely many particles in E = Rd .

Total number of particles conserved.

Markov kernel for random removal of a point:

Πn+1,n(x1, . . . , xn+1;B) =
1

n + 1

n+1∑
i=1

1lB(x1, . . . , x̂i , . . . , xn+1), B ⊂ E n.

(Weak) consistency of transition functions p
(n)
t (x ,dy) on E n:

p
(n+1)
t Πn+1,n = Πn+1,np

(n)
t .

For n = 1

p
(2)
t (x1, x2;B × E) + p

(2)
t (x1, x2;E × B) = p

(1)
t (x1;B) + p

(1)
t (x2;B).

Example: independent random walkers.

Interacting diffusions, sticky Brownian motion: Le Jan, Raimond ’04. . .

Howitt, Warren ’09 Consistent families of Brownian motion and stochastic flows of kernels.



Consistency: non-labelled particles

Configuration {xj}j=1,...,n ↔ counting measure η = δx1 + · · ·+ δxn

η(B) = #{j : xj ∈ B}.

Nf space of finite counting measures.

Annihilation operator

Af
(
δx1 + · · ·+ δxn

)
=

n∑
i=1

f
(
δx1 + · · ·+ δxi/// + · · ·+ δxn

)
Semigroup (Pt) on Nf consistent if

PtA = APt .

Independent random walkers / free Kawasaki

Lf (η) =

∫∫ (
f (η − δx + δy )− f (η)

)
q(x , dy)η(dx).

q(x , dy) one-particle jump kernel.



Symmetric inclusion process

α(dx) finite measure on Rd

Generator

Lf (η) =

∫∫ (
f (η−δx + δy )− f (η)

)
(α + η)(dy)η(dx)

Particles jump.

Join another particle or jump to new location.

Symmetric inclusion process is consistent.

Variant: add spatial structure: (α + η)(dy) → c(x, y)(α + η)(dy), c(x, y) = c(y , x).

Lattice version introduced as dual model in energy transport Giardinà, Kurchan, Redig 2007,

reminiscent of Kipnis, Marchioro, Presutti 1982.



Intertwining with Lenard’s K -transform

K -transform of function f : Nf → R

Kf
(
δx1 + · · ·+ δxn

)
=

∑
I⊂{1,...,n}

f
(∑

i∈I

δxi
)
.

Lenard’ 73: Correlation functions and the uniqueness of the state in classical mechanics.

Theorem

(Pt) conservative semigroup on Nf . Then (Pt) is consistent if and only if

∀t ≥ 0 : PtK = KPt .

Similar relation for free Kawasaki dynamics Kondratiev, Kuna, Oliveira, da Silva, Streit 2009.

Lattice result Carinci, Giardinà, Redig 2019.

Consequence: for η0 = δx1 + · · ·+ δxn , get

Eη0

[
ηt(B)

]
=

n∑
i=1

Pxi (X
(1)
t ∈ B).

Time evolution of k-point correlation functions ↔ time-evolution for k particles.



Intertwining with orthogonal polynomials
ρ probability measure on Nf .

Pn = closure in L2(Nf , ρ) of linear combinations of maps

η 7→ η(A1) · · · η(Ak), k ≤ n,

A1, . . . ,Ak ⊂ Rd . Contains maps

η 7→
∫

fndη
⊗n.

Orthogonal version

Pn(η; fn) =

∫
fndη

⊗n − orthogonal projection onto Pn−1.

Theorem

(Pt) consistent, conservative, process (ηt), reversible measure ρ

(p
(n)
t ) compatible n-particle dynamics

Eη0

[
Pn(ηt ; fn)

]
= Pn

(
η0; p

(n)
t fn

)
ρ-almost all η0 ∈ Nf .

Proof does not need explicit formulas or recurrence relations for polynomials.



Orthogonal polynomials of particular interest when ρ is law of Lévy point
process η

E
[
exp
(
−
∫

f dη
)]

= exp
(∫ ∑

k∈N

(
e−kf (x) − 1

)
m(k)α(dx)

)
.

m(k) = δk,1: Poisson point process.

I Schoutens 2000:
Orthogonal polynomials and stochastic processes.

I Nualart, Schoutens 2000:
Chaotic and predictable representations for Lévy processes.

I Lytvynov 2004:
Orthogonal decompositions for Lévy processes with an application to the
gamma, Pascal, and Meixner processes.
Builds on Berezansky, Mierzejewski. . . .



Free Kawasaki / Poisson-Charlier

ρ = law of Poisson point process with intensity measure λ

fn = 1l⊗n1
A1
⊗ · · · ⊗ 1l⊗nk

Ak
, n1 + · · ·+ nk = n, Ai ⊂ Rd disjoint,∫

fndη
⊗n = η(A1)n1 · · · η(An)nk ,

Orthogonal version

Pn(η; fn) =
k∏

i=1

Cni

(
η(Ai );λ(Ai )

)
,

where
Cn(x ;α) = xn + lower order terms (x ∈ N0)

orthogonal w.r.t. Poisson law on N0 with parameter α.

Eη0

[
Pn(ηt ; fn)

]
= Pn

(
η0; p⊗n

t fn
)
.



Application to symmetric inclusion process

Lf (η) =

∫∫ (
f (η−δx + δy )− f (η)

)
(α + η)(dy)η(dx)

Pascal point process (negative binomial point process) p ∈ (0, 1), α(dx)

I B1, . . . ,Bm ⊂ Rd disjoint ⇒ η(B1), . . . , η(Bm) independent.

I η(B) = a negative binomial random variable,

P
(
η(B) = n

)
= (1− p)β

β(β + 1) · · · (β + n − 1)

n!
pn, β = α(B).

Bruss, Rogers SPA ’91 . . . distinguished role of the Pascal distribution in finding explicit solutions

of optimal selection problems based on relative ranks.

Proposition

Symmetric inclusion process is consistent.

For every p ∈ (0, 1), law ρp,α of negative binomial point process is reversible for
the symmetric inclusion process.



Negative binomial process and Ewens measure

Expectation of functions of negative binomial process∫
f dρ =

(
1− p)α(E)

(
f (0) +

∞∑
n=1

pn

n!

∫
f (δx1 + · · ·+ δxn )λn(dx)

)

Measures λ1 = α,

λ2(A) =

∫
1lA(x1, x2)α(dx1)α(dx2) +

∫
1lA(x , x)α(dx)

more generally, λn is a sum over set partitions of {1, . . . , n}.

Total mass
λn(E n) =

∑
σ∈Σn

θ|σ|
∏
B∈σ

(|B| − 1)!, θ = α(E)

|σ| number of blocks in set partition.

Compare: Ewens probability measure on set partitions.



Compatible labelled generator

Lnfn(x1, . . . , xn) =
n∑

i=1

(∫ (
f (x1, . . . , xi//y , . . . , xn)− fn(x1, . . . , xn)

)
α(dy)

+
n∑

i=1

n∑
j=1

(
f (x1, . . . , xi//xj , . . . , xn)− fn(x1, . . . , xn)

)

Theorem

(ηt)t≥0 symmetric inclusion process, p ∈ (0, 1) fixed, orthogonalization in
L2(ρp,α)

Eη0

[
Pn

(
ηt ; fn

)]
= Pn(η0; p

(n)
t fn)

for ρp,α almost all η0.

Orthogonal version of
∫
fndη

⊗n = η(A1)n1 · · · η(Ak)nk is

Pn

(
η; fn

)
=

k∏
i=1

Mni

(
η(Ai ); p, α(Ai )

)
product of univariate Meixner polynomials.



Summary

How to generalize product dualities with orthogonal polynomials from lattices?

Natural framework:

Orthogonal polynomials from chaos decompositions and Lévy white noise

Still missing:

applications!

For proving scaling limits, analyzing fluctuation fields. . . ??
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