
HEAT KERNELS ASSOCIATED WITH ROOT
SYSTEMS AND THE DYSON AND DUNKL
PROCESSES
Journées de Probabilités 2023 (June 19-23)

Patrice Sawyer
Department of Mathematics and Computer Science,

Laurentian University, Canada

Joint work with Piotr Graczyk, LAREMA, Université
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BASIC FACTS ON ROOT SYSTEMS AND DUNKL
OPERATORS

Dunkl operators were discovered by Dunkl in late 1980’s as a
crucial tool to study Calogero-Moses-Sutherland mechanical
particle systems.

In physics/mechanics, we expect some symmetries.

The main idea of the Dunkl theory is to do analysis on Rd related
to a finite root system Σ ⊂ Rd \ {0} and to the related symmetries.

Roots α are some “very symmetrically chosen” non-zero vectors of
Rd .
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BASIC FACTS ON ROOT SYSTEMS AND DUNKL
OPERATORS

A finite subset Σ ⊂ Rd \ {0} is a root system in Rd if

1. The roots span Rd .

2. The only scalar multiple of α ∈ Σ is −α (the root system is
reduced).

3. α, β ∈ Σ implies σαβ = β − 2 〈α,β〉|α|2 α ∈ Σ.

4. α, β ∈ Σ implies 2 〈α,β〉|α|2 is an integer (the root system is

crystallographic).

The hyperplane

Hα = {x ∈ Rd | α(x) = 〈α, x〉 = 0}

orthogonal to α.
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AN IMPORTANT CASE: TYPE A ROOT
SYSTEMS

Σ = Ar−1 = {±(ei − ej) : 1 ≤ i < j ≤ r} ⊂ Rd , d ≥ r .

where e1, . . . , ed are the canonical vectors.

Ar is also considered in Rr+1 ∩ {
∑

xi = 0} and then we say “Ar in
Rr”.

The simplest example is A1 in R1. It boils down to R with
A1 = {α,−α} where α(x ,−x) = x − (−x) = 2 x .

The hyperplane Hα = {0} and σα(X ) = −X . We have
σα(A1) = A1.

For Ar−1 in Rd , the symmetries σei−ej , i 6= j , i , j ≤ r + 1, are the
transpositions of the elements xi and xj of the vector x .
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POSITIVE ROOTS Σ+

POSITIVE WEYL CHAMBER C+

Each root system Σ can be decomposed as a disjoint union

Σ = Σ+ ∪ (−Σ+)

where Σ+ and −Σ+ are separated by a hyperplane. The roots in
Σ+ are called positive roots.

The positive Weyl chamber is defined by

C+ = {x ∈ Rd : ∀α ∈ Σ+ α(x) > 0 }.

The set of reflecting hyperplanes Hα divides Rd into connected
open components called Weyl chambers (C+ is one of them).
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WEYL GROUP W FOR THE ROOT SYSTEM Σ

The finite group W generated by the symmetries σα, α ∈ Σ is
called the Weyl group associated with Σ.

Σ = Ar−1 in Rr :

W = Sr , the permutation group in r elements (recall: σei−ej are
the transpositions of the elements xi and xj of the vector x)

Σ = Ar−1 in Rd , d ≥ r :

W = Sr is the permutation group of the r first elements of x ∈ Rd
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DUNKL DERIVATIVES AND LAPLACIAN

A Dunkl derivative on Rd is a differential-difference operator: for
ξ ∈ Rd ,

Tξf (x) = ∂ξ f (x) +
∑
α∈Σ+

k(α) 〈α, ξ〉 f (x)− f (σαx)

〈α, x〉
, (f ∈ C1)

where the function k ≥ 0 on Σ is a fixed W -invariant
“multiplicity” function (for Σ = Ar : the function k is constant).

Very important (Dunkl 1995): the Dunkl derivatives commute.
For fixed Y ∈ Rd , the Dunkl kernel Ek(·, ·) is the only real-analytic
solution to the system

Tξ(k)|X Ek(X ,Y ) = 〈ξ,Y 〉Ek(X ,Y ), ∀ξ,X ∈ Rd

with Ek(0,Y ) = 1. We study ψλ(eX ) =
1

|W |
∑
w∈w

Ek(w · X , λ).
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WEYL-INVARIANT DUNKL LAPLACIAN ∆W
k

Dunkl Laplacian: ∆k :=
∑d

i=1 T
2
i

∆k f (x) = ∆f (x)+2
∑
α∈Σ+

kα
∂αf (x)

〈α, x〉
−
∑
α∈Σ+

k(α)|α|2 f (x)− f (σαx)

〈α, x〉2

∆W
k = ∆k when restricted to W -invariant functions

∆W
k f (x) = ∆f (x) + 2

∑
α∈Σ+

kα
∂αf (x)

〈α, x〉
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CASE A1 IN R1

The Dunkl derivative

Tf (x) = f ′(x) + k
f (x)− f (−x)

x

The Dunkl Laplacian

∆k f (x) = T 2f (x) = f ′′(x) +
2k

x
f ′(x)− k

f (x)− f (−x)

x2

The W -invariant Dunkl Laplacian when restricted to even
(W -invariant functions)

∆W
k f (x) = f ′′(x) +

2k

x
f ′(x)

∆W
k is the generator of a Bessel process on R+ = C+.
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DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov
process (Xt) on Rd with infinitesimal generator 1

2 ∆k .

Basic properties:

I (Xt) is a martingale,

I (Xt) is 2-selfsimilar,

I (‖Xt‖) is a Bessel process (this property characterizes Dunkl
processes among martingales (Gallardo, Yor),

I Xt jumps from x to wx , w ∈W .
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process (Xt) on Rd with infinitesimal generator 1

2 ∆k .

Basic properties:

I (Xt) is a martingale,

I (Xt) is 2-selfsimilar,

I (‖Xt‖) is a Bessel process (this property characterizes Dunkl
processes among martingales (Gallardo, Yor),

I Xt jumps from x to wx , w ∈W .



DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov
process (Xt) on Rd with infinitesimal generator 1

2 ∆k .

Basic properties:

I (Xt) is a martingale,

I (Xt) is 2-selfsimilar,

I (‖Xt‖) is a Bessel process (this property characterizes Dunkl
processes among martingales (Gallardo, Yor),

I Xt jumps from x to wx , w ∈W .



DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov
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RADIAL (W -INVARIANT) DUNKL PROCESS
Multidimensional Bessel processes

Let Π be the canonical W -projection on the positive Weyl chamber
C+ (i.e. Π(x) is the unique point of the orbit Wx which lies in
C+).

The process XW
t := Π(Xt) is called the radial (W -invariant) Dunkl

process or multidimensional Bessel process. XW
t is a continuous

diffusion with generator

LWk u(x) =
1

2
∆u(x) +

∑
α∈Σ+

k(α)
〈α,∇u(x)〉
〈α, x〉

Theory of Dunkl processes: Gallardo-Yor, Schapira, Demni,
Chibiryakov, Voit, Gallardo-Rejeb,...
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(d = RANK (Σ) + 1) RADIAL DUNKL PROCESS
FOR k(α) ≡ 1 IS THE BROWNIAN MOTION
CONDITIONED TO STAY IN C+

Let π(x) =
∏
α∈Σ+ α(x).

For example, if Σ = Ar−1 then π(x) =
∏

i>j(xi − xj), the
Vandermonde determinant.

The generator of XW
t is then

∆W u := LWk≡1u =
1

2
∆u +

〈∇π,∇u〉
π

= π−1 1

2
∆Rr

(π u).

When a probabilist looks at the last formula, they see in it the
generator of the Doob h-transform with the excessive (here
harmonic) function h = π(x).

For the root system Ar−1 on Rr , the operator ∆W is the generator
of the Dyson Brownian Motion on Rr , i.e. defined as the r

Brownian independent particles B
(1)
t , . . . ,B

(r)
t conditioned not to

collide.
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DYSON BROWNIAN MOTION IN THE WEYL

CHAMBER C+ (k(α) ≡ 1)

The Dyson Brownian Motion DΣ
t on the positive Weyl chamber

C+ is defined as the h-Doob transform of the Brownian Motion on
Rd , with h = π, i.e. its transition density is equal to

pD
t (X ,Y ) =

π(Y )

π(X )
pkilledt (X ,Y ),

where pkilledt (X ,Y ) is the transition density of the Brownian
Motion killed at the first strictly positive time of touching ∂C+.

We have
pkilledt (X ,Y ) = det(gt(xi , yj))

where gt the classical 1-dimensional heat kernel (Karlin,
MacGregor).
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DYSON BROWNIAN MOTION IN THE WEYL

CHAMBER C+ (k(α) ≡ 1)

The only difference with the invariant Dunkl case k = 1 is that the
invariant measure π2(Y ) dY is used in Dunkl analysis, but it does
not appear for the integral kernels in the Dyson Brownian Motion
case.

The Brownian motion in the Weyl chamber C+ was studied by Grabiner

(IHP 1999), Biane, Bougerol, O’Connell (Duke 2005) and many others.
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PROBABILISTIC POINT OF VIEW: DYSON
BROWNIAN MOTION (k(α) ≡ 1)

For the root system Ar−1 on Rr , the operator ∆W
k is the generator

of the k-Dyson Brownian Motion Dt on Rr .

For k = 1, the 1-Dyson Brownian Motion coincides with the
classical Dyson BM, defined as the r Brownian independent

particles B
(1)
t , . . . ,B

(r)
t conditioned not to collide.

The Brownian motion lives in the whole vector space Rr .

The Dyson Brownian motion lives in the Weyl chamber C+.

The heat kernel pWt (X , ·) is the density of Dt started at X .

The kernels are considered with respect to the Dunkl weight
function ωk(Y ) =

∏
α∈Σ+ |〈α,Y 〉|2 k(α) on Rd .
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M. DE JEU (2006): FLAT RIEMANNIAN
SYMMETRIC SPACES ARE “INCLUDED” IN THE
W -INVARIANT DUNKL ANALYSIS: k = 1/2, 1, 2

When k = 1/2, 1, 2, the W -invariant Dunkl analysis is equivalent
to the W -invariant analysis on flat Riemannian symmetric spaces:

k = 1/2: real case

k = 1: complex case

k = 2: quaternionic case
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SOME IMPORTANT NOTATION

Given a domain D;

I f (x) � g(x) means that there exists C > 0 such that
C−1 f (x) ≤ f (x) ≤ C g(x) for all x ∈ D.

I f (x) . g(x) means that there exists C > 0 such that
f (x) ≤ C g(x) for all x ∈ D.

I f (x) & g(x) means that there exists C > 0 such that
f (x) ≥ C g(x) for all x ∈ D.
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COMPARISON OF CLASSICAL AND DUNKL
POISSON AND NEWTON KERNELS

The estimates obtained in the complex and rank 1 cases have an
elegant form

KW (X ,Y ) �

KRd
(X ,Y )∏

α>0 |X − σαY |2k(α)

,

where KRd
is a classical kernel and KW (x , y) its radial Dunkl

counterpart. Equivalently

KW (X ,Y ) �

KRd
(X ,Y )∏

α∈Σ+(|X − Y |2 + α(X )α(Y ))k(α)

.

Conjecture

The above estimates are always true, with the corrections:
α ∈ Σ++ = set of undivisible positive roots, the power
k(α) + k(2α) in the place of k(α).
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THE HEAT KERNEL IN THE DUNKL SETTING

It is of note that in the Dunkl setting, knowledge of the Dunkl
kernel Ek(X ,Y ) is equivalent to knowledge of the heat kernel:

If γ =
∑

α>0 k(α) then

pt(X ,Y ) = Ck t
− d

2
−γ e

−|X |2−|Y |2
2t Ek

(
X ,

Y

t

)
.

In the Weyl-invariant setting:

pWt (X ,Y ) = Ck t
− d

2
−γ e

−|X |2−|Y |2
2t ψX

(
Y

t

)
.
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SHARP ESTIMATES: A CONJECTURE

I Given a root system Σ on Rd , let Σ++ be the set of indivisible
positive roots. For λ, X ∈ a+, we have

ψλ(eX ) � eλ(X )
∏

α∈Σ++

1

(1 + α(X )α(λ))k(α)+k(2α)

which is equivalent to: for X , Y ∈ a+

pWt (X ,Y ) � t−
d
2 e
−|X−Y |2

2t

∏
α∈Σ++

1

(t + α(X )α(Y ))k(α)+k(2α)
.
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CONJECTURE ON THE ESTIMATES OF THE
WEYL INVARIANT DUNKL HEAT KERNEL
pwt (x , y) FOR ANY ROOT SYSTEM

For any t > 0, X , Y ∈ a+

pWt (X ,Y ) �

t−d/2 e−|X−Y |
2/(2 t)∏

α∈Σ++ (t + α(X )α(Y ))k(α)+k(2α)

.

Compare with the estimates of J.P. Anker, J. Dziubański, A. Hejna
(2019-2022) for pt(X ,Y ), in the general case.

QUESTION: Could the Conjecture be true in general for
pWt (X ,Y )?
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THE CONJECTURE IN THE DUNKL SETTING
FOR TYPE A ROOT SYSTEMS

In the case of the root system of type An, the conjecture becomes:

ψλ(eX ) � eλ(X )
∏
i<j

1

(1 + (λi − λj) (xi − xj))k

where X = diag[x1, . . . xn+1], λ(X ) =
∑n+1

j=1 λj xj , xj ≥ xj+1 and
λj ≥ λj+1 whenever i < j .

For the heat kernel, this becomes

pWt (X ,Y ) � t−
d
2 e
−|X−Y |2

2t

∏
i<j

1

(t + (xi − xj) (yi − yj))k

when xj ≥ xj+1 and yj ≥ yj+1 for i < j .
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THE CONJECTURE IN THE DUNKL SETTING
FOR TYPE A ROOT SYSTEMS

Idea behind the proof: to prove the conjecture in this case, one
uses the recurrence formula:

ψλ(eX ) = eλ(X ) if n = 1 and

ψλ(eX ) =
Γ(k (n + 1))

(Γ(k))n+1
eλn+1

∑n+1
r=1 xr π(X )1−2 k
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xn+1

· · ·
∫ x1

x2

ψλ0(eY ) n∏
i=1

 i∏
j=1

(xj − yi )
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(yi − yj) dy1 · · · dyn

where λ0(U) =
∑n

r=1 (λr − λn+1) uk and
π(X ) =

∏
i<j≤n+1 (xi − xj).
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We start with the rank one case: this is essentially

∫ x1

x2

e−(λ1−λ2) (x1−y1) (x1 − y1)k−1 (y1 − x2)k−1 dy1

�
∫ x1

(x1+x2)/2
e−(λ1−λ2) (x1−y1) (x1 − y1)k−1 (y1 − x2)k−1 dy1

� (x1 − x2)k−1

∫ x1

(x1+x2)/2
e−(λ1−λ2) (x1−y1) (x1 − y1)k−1 dy1

= (x1 − x2)k−1 (λ1 − λ2)−k
∫ (λ1−λ2) (x1−x2)/2

0
e−u uk−1 du

� (x1 − x2)k−1

(
(x1 − x2)/2

1 + (λ1 − λ2) (x1 − x2)/2

)k

.

The rank 1 case is very representative of the general case.
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THE CONJECTURE IN THE DUNKL SETTING
FOR TYPE A ROOT SYSTEMS

Next step:

replacing ψλ0(eY ) by its sharp estimate (proof by
induction) and multiplying the whole thing by e−λ(X ) π(X )2 k−1,
the conjecture is equivalent to

I (n) =

∫ xn

xn+1

· · ·
∫ x1

x2

e−
∑n

i=1 (λi−λn+1) (xi−yi )

 ∏
i≤j≤n

(xi − yj)
∏

i<j≤n+1

(yi − xj)

k−1

∏
i<j≤n

yi − yj
(1 + (λi − λj)(yi − yj))k

dy1 . . . dyn

� π(X )2 k−1∏
i<j≤n+1 ((1 + (λi − λj)(xi − xj))k

.

. . . to be proven!
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W -INVARIANT DUNKL NEWTON KERNEL

The W -invariant Dunkl Newton kernel NW (X ,Y ) is the kernel of
the inverse operator of the Dunkl Laplacian ∆W .

It is the fundamental solution of the Cauchy problem

∆W u = f

where f is given and |u(x)| → 0 as x →∞.
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W -INVARIANT DUNKL NEWTON KERNEL

Corollary

Consider a root system of type A. For X , Y ∈ a+ and for fixed
d ≥ 3 and k > 0, we have

NW (X ,Y ) � 1

|X − Y |d−2

∏
α∈Σ+ |X − σαY |2 k

� 1

|X − Y |d−2
∏
α∈Σ+(|X − Y |2 + α(X )α(Y ))k

We prove a similar result in the case d = 2.
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PROOF

We use the formula

NW (X ,Y ) =

∫ ∞
0

pWt (X ,Y ) dt,

where pWt (X ,Y ) is the heat kernel of ∆W . With the help of

Lemma
Suppose k > 0, a ≥ 0, bi ≥ 0, a + bi > 0, i = 1, . . . , m and
N > k m − 1. Then

J :=

∫ ∞
0

uN e−u du∏m
i=1 (a + bi u)k

� 1∏m
i=1 (a + bi )k

.



PROOF

We use the formula

NW (X ,Y ) =

∫ ∞
0

pWt (X ,Y ) dt,

where pWt (X ,Y ) is the heat kernel of ∆W .

With the help of

Lemma
Suppose k > 0, a ≥ 0, bi ≥ 0, a + bi > 0, i = 1, . . . , m and
N > k m − 1. Then

J :=

∫ ∞
0

uN e−u du∏m
i=1 (a + bi u)k

� 1∏m
i=1 (a + bi )k

.



PROOF

We use the formula

NW (X ,Y ) =

∫ ∞
0

pWt (X ,Y ) dt,

where pWt (X ,Y ) is the heat kernel of ∆W . With the help of

Lemma
Suppose k > 0, a ≥ 0, bi ≥ 0, a + bi > 0, i = 1, . . . , m and
N > k m − 1. Then

J :=

∫ ∞
0

uN e−u du∏m
i=1 (a + bi u)k

� 1∏m
i=1 (a + bi )k

.



HEAT SEMIGROUPS FOR FRACTIONAL
POWERS OF ∆W

k

Let s ∈ (0, 2). The fractional powers of the W -invariant Dunkl
Laplacian

(−∆W
k )s/2

are the infinitesimal generators of semigroups (hWt (X ,Y ))t≥0,
called W-invariant Dunkl s-stable semigroups.

Stable semigroups were studied:

I on Riemannian symmetric spaces of noncompact type
by Getoor (1961), Graczyk and Stós (2004),

I in the Dunkl context
by Jedidi (2021), Rejeb (2021), Luks (2022).
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ESTIMATES OF s-STABLE DUNKL HEAT
SEMIGROUPS

Theorem (PG, PS 2022)

Consider the W -invariant Dunkl Laplacian in the An case with
multiplicity k > 0. Then for X , Y ∈ a+,

hWt (X ,Y ) �

hRd

t (X ,Y )∏
α>0(t2/s + |X − σαY |2)k

� hRd

t (X ,Y )∏
α>0(t2/s + |X − Y |2 + α(X )α(Y ))k

.

hRd

t (X ,Y ) � min

{
1

td/s
,

t

|X − Y |d+s

}
� t

(t2/s + |X − Y |2)(d+s)/2
.

is the s-stable rotationally invariant semigroup on Rd , with
generator (−∆)s/2 (Blumenthal-Getoor)
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PROOF

We have

hWt (X ,Y ) =

∫ ∞
0

pWu (X ,Y ) ηt(u) du

where ηt(u) is the density of the s/2-stable subordinator, i.e. of a
positive Lévy process (Yt)t>0 with the Laplace transform

E (exp(z Yt)) = exp(−t zs/2), z > 0;

ηt(u) is not given explicitely; its fine estimates are used (Bogdan,
Stós, Sztonyk (2003) Studia Math.)

Upper estimates may be deduced from our estimates of the
W -invariant Dunkl heat kernel and from recent results on
estimates for subordinanted processes [Grzywny, Trojan (2021)]
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OPDAM-CHEREDNIK DERIVATIVES AND
LAPLACIAN

Let ∂ξ be the derivative in the direction of ξ ∈ Rd . The
Opdam-Cherednik operators indexed by ξ are then given by

Dξ f (X ) = ∂ξ f (X ) +
∑
α∈Σ+

kα α(ξ)
f (X )− f (σα X )

1− e−α(X )
− ρ(k)(ξ) f (X ),

where ρ(k) =
∑

α∈Σ+
k(α)α.

Very important:The Dξ’s, ξ ∈ Rd , form a commutative family.

Trigonometric Dunkl Laplacian: L =
∑d

i=1 D
2
ei .

For fixed Y ∈ Rd , the Opdam-Cherednik kernel Gk(·, ·) is then the
only real-analytic solution to the system

Dξ(k)|X Gk(X ,Y ) = 〈ξ,Y 〉Gk(X ,Y ), ∀ξ,X ∈ Rd

with Gk(0,Y ) = 1. We study φλ(eX ) =
1

|W |
∑
w∈w

Gk(w · X , λ).

Opdam-Cherednik stochastic process has L as generator.



OPDAM-CHEREDNIK DERIVATIVES AND
LAPLACIAN

Let ∂ξ be the derivative in the direction of ξ ∈ Rd . The
Opdam-Cherednik operators indexed by ξ are then given by

Dξ f (X ) = ∂ξ f (X ) +
∑
α∈Σ+

kα α(ξ)
f (X )− f (σα X )

1− e−α(X )
− ρ(k)(ξ) f (X ),

where ρ(k) =
∑

α∈Σ+
k(α)α.

Very important:The Dξ’s, ξ ∈ Rd , form a commutative family.

Trigonometric Dunkl Laplacian: L =
∑d

i=1 D
2
ei .

For fixed Y ∈ Rd , the Opdam-Cherednik kernel Gk(·, ·) is then the
only real-analytic solution to the system

Dξ(k)|X Gk(X ,Y ) = 〈ξ,Y 〉Gk(X ,Y ), ∀ξ,X ∈ Rd

with Gk(0,Y ) = 1. We study φλ(eX ) =
1

|W |
∑
w∈w

Gk(w · X , λ).

Opdam-Cherednik stochastic process has L as generator.



OPDAM-CHEREDNIK DERIVATIVES AND
LAPLACIAN

Let ∂ξ be the derivative in the direction of ξ ∈ Rd . The
Opdam-Cherednik operators indexed by ξ are then given by

Dξ f (X ) = ∂ξ f (X ) +
∑
α∈Σ+

kα α(ξ)
f (X )− f (σα X )

1− e−α(X )
− ρ(k)(ξ) f (X ),

where ρ(k) =
∑

α∈Σ+
k(α)α.

Very important:The Dξ’s, ξ ∈ Rd , form a commutative family.

Trigonometric Dunkl Laplacian: L =
∑d

i=1 D
2
ei .

For fixed Y ∈ Rd , the Opdam-Cherednik kernel Gk(·, ·) is then the
only real-analytic solution to the system

Dξ(k)|X Gk(X ,Y ) = 〈ξ,Y 〉Gk(X ,Y ), ∀ξ,X ∈ Rd

with Gk(0,Y ) = 1. We study φλ(eX ) =
1

|W |
∑
w∈w

Gk(w · X , λ).

Opdam-Cherednik stochastic process has L as generator.



OPDAM-CHEREDNIK DERIVATIVES AND
LAPLACIAN

Let ∂ξ be the derivative in the direction of ξ ∈ Rd . The
Opdam-Cherednik operators indexed by ξ are then given by

Dξ f (X ) = ∂ξ f (X ) +
∑
α∈Σ+

kα α(ξ)
f (X )− f (σα X )

1− e−α(X )
− ρ(k)(ξ) f (X ),

where ρ(k) =
∑

α∈Σ+
k(α)α.

Very important:The Dξ’s, ξ ∈ Rd , form a commutative family.

Trigonometric Dunkl Laplacian: L =
∑d

i=1 D
2
ei .

For fixed Y ∈ Rd , the Opdam-Cherednik kernel Gk(·, ·) is then the
only real-analytic solution to the system

Dξ(k)|X Gk(X ,Y ) = 〈ξ,Y 〉Gk(X ,Y ), ∀ξ,X ∈ Rd

with Gk(0,Y ) = 1. We study φλ(eX ) =
1

|W |
∑
w∈w

Gk(w · X , λ).

Opdam-Cherednik stochastic process has L as generator.



OPDAM-CHEREDNIK DERIVATIVES AND
LAPLACIAN

Let ∂ξ be the derivative in the direction of ξ ∈ Rd . The
Opdam-Cherednik operators indexed by ξ are then given by

Dξ f (X ) = ∂ξ f (X ) +
∑
α∈Σ+

kα α(ξ)
f (X )− f (σα X )

1− e−α(X )
− ρ(k)(ξ) f (X ),

where ρ(k) =
∑

α∈Σ+
k(α)α.

Very important:The Dξ’s, ξ ∈ Rd , form a commutative family.

Trigonometric Dunkl Laplacian: L =
∑d

i=1 D
2
ei .

For fixed Y ∈ Rd , the Opdam-Cherednik kernel Gk(·, ·) is then the
only real-analytic solution to the system

Dξ(k)|X Gk(X ,Y ) = 〈ξ,Y 〉Gk(X ,Y ), ∀ξ,X ∈ Rd

with Gk(0,Y ) = 1. We study φλ(eX ) =
1

|W |
∑
w∈w

Gk(w · X , λ).

Opdam-Cherednik stochastic process has L as generator.



OPDAM-CHEREDNIK DERIVATIVES AND
LAPLACIAN

Let ∂ξ be the derivative in the direction of ξ ∈ Rd . The
Opdam-Cherednik operators indexed by ξ are then given by

Dξ f (X ) = ∂ξ f (X ) +
∑
α∈Σ+

kα α(ξ)
f (X )− f (σα X )

1− e−α(X )
− ρ(k)(ξ) f (X ),

where ρ(k) =
∑

α∈Σ+
k(α)α.

Very important:The Dξ’s, ξ ∈ Rd , form a commutative family.

Trigonometric Dunkl Laplacian: L =
∑d

i=1 D
2
ei .

For fixed Y ∈ Rd , the Opdam-Cherednik kernel Gk(·, ·) is then the
only real-analytic solution to the system

Dξ(k)|X Gk(X ,Y ) = 〈ξ,Y 〉Gk(X ,Y ), ∀ξ,X ∈ Rd

with Gk(0,Y ) = 1.

We study φλ(eX ) =
1

|W |
∑
w∈w

Gk(w · X , λ).

Opdam-Cherednik stochastic process has L as generator.



OPDAM-CHEREDNIK DERIVATIVES AND
LAPLACIAN

Let ∂ξ be the derivative in the direction of ξ ∈ Rd . The
Opdam-Cherednik operators indexed by ξ are then given by

Dξ f (X ) = ∂ξ f (X ) +
∑
α∈Σ+

kα α(ξ)
f (X )− f (σα X )

1− e−α(X )
− ρ(k)(ξ) f (X ),

where ρ(k) =
∑

α∈Σ+
k(α)α.

Very important:The Dξ’s, ξ ∈ Rd , form a commutative family.

Trigonometric Dunkl Laplacian: L =
∑d

i=1 D
2
ei .

For fixed Y ∈ Rd , the Opdam-Cherednik kernel Gk(·, ·) is then the
only real-analytic solution to the system

Dξ(k)|X Gk(X ,Y ) = 〈ξ,Y 〉Gk(X ,Y ), ∀ξ,X ∈ Rd

with Gk(0,Y ) = 1. We study φλ(eX ) =
1

|W |
∑
w∈w

Gk(w · X , λ).

Opdam-Cherednik stochastic process has L as generator.



CURVED RIEMANNIAN SYMMETRIC SPACES
ARE “INCLUDED” IN W -INVARIANT
OPDAM-CHEREDNIK ANALYSIS: k = 1/2, 1, 2

When k = 1/2, 1, 2, the W -invariant Opdam-Cherednik analysis is
equivalent to the W -invariant analysis on curved Riemannian
symmetric spaces:

k = 1/2: real case

k = 1: complex case

k = 2: quaternionic
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CHALLENGE: HEAT KERNEL ESTIMATES IN
THE CURVED SYMMETRIC / DUNKL
TRIGONOMETRIC CASE

We obtained the following estimates of the Laplace-Beltrami heat
kernel Pt(X ,Y ) on curved complex symmetric spaces of type A:

Theorem (PG,PS 2021)

In the curved symmetric complex case k = 1 for the root systems
Ad in Rd , denoting ρ =

∑
α>0 α,

PW
t (X ,Y )

� t−
d
2 e
−|X−Y |2

2t

e−|ρ|
2t/2 e−ρ(X+Y )

∏
α>0

(1 + α(X )) (1 + α(Y ))

t + α(X )α(Y )
.
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PROOF

We use the relationship between the heat kernel pWt (X ,Y ) in the
flat case and the heat kernel PW

t (X ,Y ) in the curved case (valid
only in the complex case k = 1):

PW
t (X ,Y ) = e−|ρ|

2t/2 π(X )π(Y )

δ1/2(X ) δ1/2(Y )
pWt (X ,Y ).

where π(Y ) =
∏
α>0 α(Y ), δ(X ) =

∏
α>0 sinh2 α(X ).

The formula follows from the fact that the respective radial
Laplacians and radial measures are:

π−1 La ◦ π and π(X ) dX in the flat case
(La stands for the Euclidean Laplacian on a)

δ−1/2 (La − |ρ|2) ◦ δ1/2 and δ(X ) dX in the curved case.
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SPECIAL CASE: A RANK 1 RESULT

Corollary

Consider the complex hyperbolic space, isomorphic to the
3-dimensional real hyperbolic space H3(R).

Pt(X ,Y ) � t−
1
2 e
−|X−Y |2

2t e−t/2 e−(X+Y )/2 (1 + X ) (1 + Y )

t + XY
,

X ,Y , t ≥ 0
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CONJECTURE FOR SHARP ESTIMATES OF
pwt (x , y) IN THE W -INVARIANT
OPDAM-CHEREDNIK TRIGONOMETRIC CASE

We conjecture that in the W -invariant Opdam-Cherednik
trigonometric case we have the following sharp estimate:

Conjecture

pWt (X ,Y ) � t−
d
2 e
−|X−Y |2

2t e−|ρ|
2t/2 e−ρ(X+Y )∏

α∈Σ++

(1 + α(X )) (1 + α(Y ))

(t + 1 + α(X + Y ))k(α)+k(2α)−1

(t + α(X )α(Y ))k(α)+k(2α)
.
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CONJECTURE FOR SHARP ESTIMATES OF
pwt (x , y) IN THE W -INVARIANT
OPDAM-CHEREDNIK TRIGONOMETRIC CASE

This Conjecture is compatible with the result of Anker and
Ostellari (2003) for Pt(X , 0) on the hyperbolic spaces and by
Schapira (2015) in Opdam-Cherednik setting including the curved
symmetric spaces M (n = dim(M)):

Pt(X , 0) � t−
n
2 e
−|X |2

2t e−|ρ|
2t/2 e−ρ(X )∏

α∈Σ++

(1 + α(X )) (t + 1 + α(X ))k(α)+k(2α)−1

PG and PS proved (2023) the conjecture for A1 using a technique
developed by Anker and Ostellari (2003) and also used by Schapira
(2018).
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CONJECTURE FOR SHARP ESTIMATES OF
pwt (x , y) IN THE W -INVARIANT
OPDAM-CHEREDNIK TRIGONOMETRIC CASE

The conjecture in A1:

pWt (x , y) � t−
1
2 e
−|x−y|2

2t

e−k
2t/2 e−k (x+y) (1 + x) (1 + y)

(t + 1 + x + y)k−1

(t + x y)k
,

x ≥ 0, y ≥ 0, t > 0.

Reference: P. Graczyk and P. Sawyer. Sharp estimates for the
Opdam-Cherednik W-invariant heat kernel for the root system A1

(2022), arXiv:2304.07009, 1–17.
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The conjecture in A1:

pWt (x , y) � t−
1
2 e
−|x−y|2

2t

e−k
2t/2 e−k (x+y) (1 + x) (1 + y)

(t + 1 + x + y)k−1

(t + x y)k
,

x ≥ 0, y ≥ 0, t > 0.
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Basic idea: use the Weak parabolic minimum principle for
unbounded domains and a subdivision of the domain in regions:
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THE END!

THANK YOU FOR YOUR ATTENTION


