HEAT KERNELS ASSOCIATED WITH ROOT SYSTEMS AND THE DYSON AND DUNKL PROCESSES
 Journées de Probabilités 2023 (June 19-23)

Patrice Sawyer
Department of Mathematics and Computer Science, Laurentian University, Canada

Joint work with Piotr Graczyk, LAREMA, Université d'Angers, France

ANALYSIS ON ROOT SYSTEMS: THE SETTING

ANALYSIS ON ROOT SYSTEMS: THE SETTING

root systems

ANALYSIS ON ROOT SYSTEMS: THE SETTING

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

Dunkl operators were discovered by Dunkl in late 1980's as a crucial tool to study Calogero-Moses-Sutherland mechanical particle systems.

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

Dunkl operators were discovered by Dunkl in late 1980's as a crucial tool to study Calogero-Moses-Sutherland mechanical particle systems.

In physics/mechanics, we expect some symmetries.

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

Dunkl operators were discovered by Dunkl in late 1980's as a crucial tool to study Calogero-Moses-Sutherland mechanical particle systems.

In physics/mechanics, we expect some symmetries.
The main idea of the Dunkl theory is to do analysis on \mathbf{R}^{d} related to a finite root system $\Sigma \subset \mathbf{R}^{d} \backslash\{0\}$ and to the related symmetries.

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

Dunkl operators were discovered by Dunkl in late 1980's as a crucial tool to study Calogero-Moses-Sutherland mechanical particle systems.

In physics/mechanics, we expect some symmetries.
The main idea of the Dunkl theory is to do analysis on \mathbf{R}^{d} related to a finite root system $\Sigma \subset \mathbf{R}^{d} \backslash\{0\}$ and to the related symmetries.

Roots α are some "very symmetrically chosen" non-zero vectors of \mathbf{R}^{d}.

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

A finite subset $\Sigma \subset \mathbf{R}^{d} \backslash\{0\}$ is a root system in \mathbf{R}^{d} if

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

A finite subset $\Sigma \subset \mathbf{R}^{d} \backslash\{0\}$ is a root system in \mathbf{R}^{d} if

1. The roots span \mathbf{R}^{d}.

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

A finite subset $\Sigma \subset \mathbf{R}^{d} \backslash\{0\}$ is a root system in \mathbf{R}^{d} if

1. The roots span \mathbf{R}^{d}.
2. The only scalar multiple of $\alpha \in \Sigma$ is $-\alpha$ (the root system is reduced).

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

A finite subset $\Sigma \subset \mathbf{R}^{d} \backslash\{0\}$ is a root system in \mathbf{R}^{d} if

1. The roots span \mathbf{R}^{d}.
2. The only scalar multiple of $\alpha \in \Sigma$ is $-\alpha$ (the root system is reduced).
3. $\alpha, \beta \in \Sigma$ implies $\sigma_{\alpha} \beta=\beta-2 \frac{\langle\alpha, \beta\rangle}{|\alpha|^{2}} \alpha \in \Sigma$.

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

A finite subset $\Sigma \subset \mathbf{R}^{d} \backslash\{0\}$ is a root system in \mathbf{R}^{d} if

1. The roots span \mathbf{R}^{d}.
2. The only scalar multiple of $\alpha \in \Sigma$ is $-\alpha$ (the root system is reduced).
3. $\alpha, \beta \in \Sigma$ implies $\sigma_{\alpha} \beta=\beta-2 \frac{\langle\alpha, \beta\rangle}{|\alpha|^{2}} \alpha \in \Sigma$.
4. $\alpha, \beta \in \Sigma$ implies $2 \frac{\langle\alpha, \beta\rangle}{|\alpha|^{2}}$ is an integer (the root system is crystallographic).

BASIC FACTS ON ROOT SYSTEMS AND DUNKL OPERATORS

A finite subset $\Sigma \subset \mathbf{R}^{d} \backslash\{0\}$ is a root system in \mathbf{R}^{d} if

1. The roots span \mathbf{R}^{d}.
2. The only scalar multiple of $\alpha \in \Sigma$ is $-\alpha$ (the root system is reduced).
3. $\alpha, \beta \in \Sigma$ implies $\sigma_{\alpha} \beta=\beta-2 \frac{\langle\alpha, \beta\rangle}{|\alpha|^{2}} \alpha \in \Sigma$.
4. $\alpha, \beta \in \Sigma$ implies $2 \frac{\langle\alpha, \beta\rangle}{|\alpha|^{2}}$ is an integer (the root system is crystallographic).

The hyperplane

$$
H_{\alpha}=\left\{x \in \mathbf{R}^{d} \mid \quad \alpha(x)=\langle\alpha, x\rangle=0\right\}
$$

orthogonal to α.

REDUCED ROOT SYSTEMS IN R AND R ${ }^{2}$

REDUCED ROOT SYSTEMS IN R AND R ${ }^{2}$

$\mathrm{A}_{1} \times \mathrm{A}_{1}$

A_{2}

$\mathrm{B}_{2} \cong \mathrm{C}_{2}$

G_{2}

AN IMPORTANT CASE: TYPE A ROOT SYSTEMS

AN IMPORTANT CASE: TYPE A ROOT SYSTEMS

$$
\Sigma=A_{r-1}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right): 1 \leq i<j \leq r\right\} \subset \mathbf{R}^{d}, \quad d \geq r
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ are the canonical vectors.

AN IMPORTANT CASE: TYPE A ROOT SYSTEMS

$$
\Sigma=A_{r-1}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right): 1 \leq i<j \leq r\right\} \subset \mathbf{R}^{d}, \quad d \geq r
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ are the canonical vectors.
A_{r} is also considered in $\mathbf{R}^{r+1} \cap\left\{\sum x_{i}=0\right\}$ and then we say " A_{r} in $\mathbf{R}^{r "}$.

AN IMPORTANT CASE: TYPE A ROOT SYSTEMS

$$
\Sigma=A_{r-1}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right): 1 \leq i<j \leq r\right\} \subset \mathbf{R}^{d}, \quad d \geq r
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ are the canonical vectors.
A_{r} is also considered in $\mathbf{R}^{r+1} \cap\left\{\sum x_{i}=0\right\}$ and then we say " A_{r} in $\mathbf{R}^{r "}$.

The simplest example is A_{1} in $\mathbf{R}^{\mathbf{1}}$. It boils down to \mathbf{R} with $A_{1}=\{\alpha,-\alpha\}$ where $\alpha(x,-x)=x-(-x)=2 x$.

AN IMPORTANT CASE: TYPE A ROOT SYSTEMS

$$
\Sigma=A_{r-1}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right): 1 \leq i<j \leq r\right\} \subset \mathbf{R}^{d}, \quad d \geq r
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ are the canonical vectors.
A_{r} is also considered in $\mathbf{R}^{r+1} \cap\left\{\sum x_{i}=0\right\}$ and then we say " A_{r} in $\mathbf{R}^{r "}$.

The simplest example is A_{1} in $\mathbf{R}^{\mathbf{1}}$. It boils down to \mathbf{R} with $A_{1}=\{\alpha,-\alpha\}$ where $\alpha(x,-x)=x-(-x)=2 x$.

The hyperplane $H_{\alpha}=\{0\}$ and $\sigma_{\alpha}(X)=-X$. We have $\sigma_{\alpha}\left(A_{1}\right)=A_{1}$.

AN IMPORTANT CASE: TYPE A ROOT SYSTEMS

$$
\Sigma=A_{r-1}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right): 1 \leq i<j \leq r\right\} \subset \mathbf{R}^{d}, \quad d \geq r
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ are the canonical vectors.
A_{r} is also considered in $\mathbf{R}^{r+1} \cap\left\{\sum x_{i}=0\right\}$ and then we say " A_{r} in $\mathbf{R}^{r "}$.

The simplest example is A_{1} in $\mathbf{R}^{\mathbf{1}}$. It boils down to \mathbf{R} with $A_{1}=\{\alpha,-\alpha\}$ where $\alpha(x,-x)=x-(-x)=2 x$.

The hyperplane $H_{\alpha}=\{0\}$ and $\sigma_{\alpha}(X)=-X$. We have $\sigma_{\alpha}\left(A_{1}\right)=A_{1}$.

For A_{r-1} in \mathbf{R}^{d}, the symmetries $\sigma_{\mathbf{e}_{i}-\mathbf{e}_{j}}, i \neq j, i, j \leq r+1$, are the transpositions of the elements x_{i} and x_{j} of the vector x.

POSITIVE ROOTS Σ^{+} POSITIVE WEYL CHAMBER C^{+}

POSITIVE ROOTS Σ^{+} POSITIVE WEYL CHAMBER C^{+}

Each root system Σ can be decomposed as a disjoint union

$$
\Sigma=\Sigma^{+} \cup\left(-\Sigma^{+}\right)
$$

where Σ^{+}and $-\Sigma^{+}$are separated by a hyperplane. The roots in Σ^{+}are called positive roots.

POSITIVE ROOTS Σ^{+} POSITIVE WEYL CHAMBER C^{+}

Each root system Σ can be decomposed as a disjoint union

$$
\Sigma=\Sigma^{+} \cup\left(-\Sigma^{+}\right)
$$

where Σ^{+}and $-\Sigma^{+}$are separated by a hyperplane. The roots in Σ^{+}are called positive roots.

The positive Weyl chamber is defined by

$$
C^{+}=\left\{x \in \mathbf{R}^{d}: \forall \alpha \in \Sigma^{+} \alpha(x)>0\right\}
$$

POSITIVE ROOTS Σ^{+} POSITIVE WEYL CHAMBER C^{+}

Each root system Σ can be decomposed as a disjoint union

$$
\Sigma=\Sigma^{+} \cup\left(-\Sigma^{+}\right)
$$

where Σ^{+}and $-\Sigma^{+}$are separated by a hyperplane. The roots in Σ^{+}are called positive roots.

The positive Weyl chamber is defined by

$$
C^{+}=\left\{x \in \mathbf{R}^{d}: \forall \alpha \in \Sigma^{+} \alpha(x)>0\right\}
$$

The set of reflecting hyperplanes H_{α} divides \mathbf{R}^{d} into connected open components called Weyl chambers (C^{+}is one of them).

REDUCED ROOT SYSTEMS IN R AND R ${ }^{2}$

REDUCED ROOT SYSTEMS IN R AND R ${ }^{2}$

$\mathrm{A}_{1} \times \mathrm{A}_{1}$

A_{2}

$\mathrm{B}_{2} \cong \mathrm{C}_{2}$

G_{2}

WEYL GROUP W FOR THE ROOT SYSTEM Σ

WEYL GROUP W FOR THE ROOT SYSTEM Σ

The finite group W generated by the symmetries $\sigma_{\alpha}, \alpha \in \Sigma$ is called the Weyl group associated with Σ.

WEYL GROUP W FOR THE ROOT SYSTEM Σ

The finite group W generated by the symmetries $\sigma_{\alpha}, \alpha \in \Sigma$ is called the Weyl group associated with Σ.
$\Sigma=A_{r-1}$ in $\mathbf{R}^{r}:$
$W=S_{r}$, the permutation group in r elements (recall: $\sigma_{\mathbf{e}_{i}-\mathbf{e}_{j}}$ are the transpositions of the elements x_{i} and x_{j} of the vector x)

WEYL GROUP W FOR THE ROOT SYSTEM Σ

The finite group W generated by the symmetries $\sigma_{\alpha}, \alpha \in \Sigma$ is called the Weyl group associated with Σ.
$\Sigma=A_{r-1}$ in \mathbf{R}^{r} :
$W=S_{r}$, the permutation group in r elements (recall: $\sigma_{\mathbf{e}_{i}-\mathbf{e}_{j}}$ are the transpositions of the elements x_{i} and x_{j} of the vector x)
$\Sigma=A_{r-1}$ in $\mathbf{R}^{d}, d \geq r:$
$W=S_{r}$ is the permutation group of the r first elements of $x \in \mathbf{R}^{d}$

DUNKL DERIVATIVES AND LAPLACIAN

DUNKL DERIVATIVES AND LAPLACIAN

A Dunkl derivative on $\mathbf{R}^{\boldsymbol{d}}$ is a differential-difference operator: for $\xi \in \mathbf{R}^{d}$,

$$
T_{\xi} f(x)=\partial_{\xi} f(x)+\sum_{\alpha \in \Sigma^{+}} k(\alpha)\langle\alpha, \xi\rangle \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle}, \quad\left(f \in \mathcal{C}^{1}\right)
$$

where the function $k \geq 0$ on Σ is a fixed W-invariant "multiplicity" function

DUNKL DERIVATIVES AND LAPLACIAN

A Dunkl derivative on $\mathbf{R}^{\boldsymbol{d}}$ is a differential-difference operator: for $\xi \in \mathbf{R}^{d}$,

$$
T_{\xi} f(x)=\partial_{\xi} f(x)+\sum_{\alpha \in \Sigma^{+}} k(\alpha)\langle\alpha, \xi\rangle \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle}, \quad\left(f \in \mathcal{C}^{1}\right)
$$

where the function $k \geq 0$ on Σ is a fixed W-invariant "multiplicity" function (for $\Sigma=A_{r}$: the function k is constant).

DUNKL DERIVATIVES AND LAPLACIAN

A Dunkl derivative on $\mathbf{R}^{\boldsymbol{d}}$ is a differential-difference operator: for $\xi \in \mathbf{R}^{d}$,

$$
T_{\xi} f(x)=\partial_{\xi} f(x)+\sum_{\alpha \in \Sigma^{+}} k(\alpha)\langle\alpha, \xi\rangle \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle}, \quad\left(f \in \mathcal{C}^{1}\right)
$$

where the function $k \geq 0$ on Σ is a fixed W-invariant "multiplicity" function (for $\Sigma=A_{r}$: the function k is constant).

Very important (Dunkl 1995): the Dunkl derivatives commute.

DUNKL DERIVATIVES AND LAPLACIAN

A Dunkl derivative on $\mathbf{R}^{\boldsymbol{d}}$ is a differential-difference operator: for $\xi \in \mathbf{R}^{d}$,

$$
T_{\xi} f(x)=\partial_{\xi} f(x)+\sum_{\alpha \in \Sigma^{+}} k(\alpha)\langle\alpha, \xi\rangle \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle}, \quad\left(f \in \mathcal{C}^{1}\right)
$$

where the function $k \geq 0$ on Σ is a fixed W-invariant "multiplicity" function (for $\Sigma=A_{r}$: the function k is constant).

Very important (Dunkl 1995): the Dunkl derivatives commute. For fixed $Y \in \mathbf{R}^{d}$, the Dunkl kernel $E_{k}(\cdot, \cdot)$ is the only real-analytic solution to the system

$$
\left.T_{\xi}(k)\right|_{X} E_{k}(X, Y)=\langle\xi, Y\rangle E_{k}(X, Y), \forall \xi, X \in \mathbf{R}^{d}
$$

with $E_{k}(0, Y)=1$.

DUNKL DERIVATIVES AND LAPLACIAN

A Dunkl derivative on \mathbf{R}^{d} is a differential-difference operator: for $\xi \in \mathbf{R}^{d}$,

$$
T_{\xi} f(x)=\partial_{\xi} f(x)+\sum_{\alpha \in \Sigma^{+}} k(\alpha)\langle\alpha, \xi\rangle \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle}, \quad\left(f \in \mathcal{C}^{1}\right)
$$

where the function $k \geq 0$ on Σ is a fixed W-invariant "multiplicity" function (for $\Sigma=A_{r}$: the function k is constant).

Very important (Dunkl 1995): the Dunkl derivatives commute. For fixed $Y \in \mathbf{R}^{d}$, the Dunkl kernel $E_{k}(\cdot, \cdot)$ is the only real-analytic solution to the system

$$
\left.T_{\xi}(k)\right|_{X} E_{k}(X, Y)=\langle\xi, Y\rangle E_{k}(X, Y), \forall \xi, X \in \mathbf{R}^{d}
$$

with $E_{k}(0, Y)=1$. We study $\psi_{\lambda}\left(e^{X}\right)=\frac{1}{|W|} \sum_{w \in w} E_{k}(w \cdot X, \lambda)$.

WEYL-INVARIANT DUNKL LAPLACIAN Δ_{k}^{W}

WEYL-INVARIANT DUNKL LAPLACIAN Δ_{k}^{W}

Dunkl Laplacian: $\Delta_{k}:=\sum_{i=1}^{d} T_{i}^{2}$

WEYL-INVARIANT DUNKL LAPLACIAN Δ_{k}^{W}

Dunkl Laplacian: $\Delta_{k}:=\sum_{i=1}^{d} T_{i}^{2}$

$$
\Delta_{k} f(x)=\Delta f(x)+2 \sum_{\alpha \in \Sigma^{+}} k_{\alpha} \frac{\partial_{\alpha} f(x)}{\langle\alpha, x\rangle}-\sum_{\alpha \in \Sigma^{+}} k(\alpha)|\alpha|^{2} \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle^{2}}
$$

WEYL-INVARIANT DUNKL LAPLACIAN Δ_{k}^{W}

Dunkl Laplacian: $\Delta_{k}:=\sum_{i=1}^{d} T_{i}^{2}$
$\Delta_{k} f(x)=\Delta f(x)+2 \sum_{\alpha \in \Sigma^{+}} k_{\alpha} \frac{\partial_{\alpha} f(x)}{\langle\alpha, x\rangle}-\sum_{\alpha \in \Sigma^{+}} k(\alpha)|\alpha|^{2} \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle^{2}}$
$\Delta_{k}^{W}=\Delta_{k}$ when restricted to W-invariant functions

WEYL-INVARIANT DUNKL LAPLACIAN Δ_{k}^{W}

Dunkl Laplacian: $\Delta_{k}:=\sum_{i=1}^{d} T_{i}^{2}$

$$
\Delta_{k} f(x)=\Delta f(x)+2 \sum_{\alpha \in \Sigma^{+}} k_{\alpha} \frac{\partial_{\alpha} f(x)}{\langle\alpha, x\rangle}-\sum_{\alpha \in \Sigma^{+}} k(\alpha)|\alpha|^{2} \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle^{2}}
$$

$\Delta_{k}^{W}=\Delta_{k}$ when restricted to W-invariant functions

$$
\Delta_{k}^{W} f(x)=\Delta f(x)+2 \sum_{\alpha \in \Sigma^{+}} k_{\alpha} \frac{\partial_{\alpha} f(x)}{\langle\alpha, x\rangle}
$$

CASE A_{1} IN \mathbf{R}^{1}

CASE $A_{1} \operatorname{IN} \mathbf{R}^{1}$

The Dunkl derivative

$$
T f(x)=f^{\prime}(x)+k \frac{f(x)-f(-x)}{x}
$$

CASE $A_{1} \operatorname{IN} \mathbf{R}^{1}$

The Dunkl derivative

$$
T f(x)=f^{\prime}(x)+k \frac{f(x)-f(-x)}{x}
$$

The Dunkl Laplacian

$$
\Delta_{k} f(x)=T^{2} f(x)=f^{\prime \prime}(x)+\frac{2 k}{x} f^{\prime}(x)-k \frac{f(x)-f(-x)}{x^{2}}
$$

CASE $A_{1} \operatorname{IN} \mathbf{R}^{1}$

The Dunkl derivative

$$
T f(x)=f^{\prime}(x)+k \frac{f(x)-f(-x)}{x}
$$

The Dunkl Laplacian

$$
\Delta_{k} f(x)=T^{2} f(x)=f^{\prime \prime}(x)+\frac{2 k}{x} f^{\prime}(x)-k \frac{f(x)-f(-x)}{x^{2}}
$$

The W-invariant Dunkl Laplacian when restricted to even (W-invariant functions)

$$
\Delta_{k}^{W} f(x)=f^{\prime \prime}(x)+\frac{2 k}{x} f^{\prime}(x)
$$

CASE $A_{1} \operatorname{IN} \mathbf{R}^{1}$

The Dunkl derivative

$$
T f(x)=f^{\prime}(x)+k \frac{f(x)-f(-x)}{x}
$$

The Dunkl Laplacian

$$
\Delta_{k} f(x)=T^{2} f(x)=f^{\prime \prime}(x)+\frac{2 k}{x} f^{\prime}(x)-k \frac{f(x)-f(-x)}{x^{2}}
$$

The W-invariant Dunkl Laplacian when restricted to even (W-invariant functions)

$$
\Delta_{k}^{W} f(x)=f^{\prime \prime}(x)+\frac{2 k}{x} f^{\prime}(x)
$$

Δ_{k}^{W} is the generator of a Bessel process on $\mathbf{R}^{+}=\overline{C^{+}}$.

DUNKL PROCESSES

DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov process $\left(X_{t}\right)$ on \mathbf{R}^{d} with infinitesimal generator $\frac{1}{2} \Delta_{k}$.

DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov process $\left(X_{t}\right)$ on \mathbf{R}^{d} with infinitesimal generator $\frac{1}{2} \Delta_{k}$.

Basic properties:

DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov process $\left(X_{t}\right)$ on \mathbf{R}^{d} with infinitesimal generator $\frac{1}{2} \Delta_{k}$.

Basic properties:

- $\left(X_{t}\right)$ is a martingale,

DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov process $\left(X_{t}\right)$ on \mathbf{R}^{d} with infinitesimal generator $\frac{1}{2} \Delta_{k}$.

Basic properties:

- $\left(X_{t}\right)$ is a martingale,
- $\left(X_{t}\right)$ is 2-selfsimilar,

DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov process $\left(X_{t}\right)$ on \mathbf{R}^{d} with infinitesimal generator $\frac{1}{2} \Delta_{k}$.

Basic properties:

- $\left(X_{t}\right)$ is a martingale,
- $\left(X_{t}\right)$ is 2-selfsimilar,
- $\left(\left\|X_{t}\right\|\right)$ is a Bessel process (this property characterizes Dunkl processes among martingales (Gallardo, Yor),

DUNKL PROCESSES

Rösler, Voit (1998): The Dunkl process is the càdlàg Markov process $\left(X_{t}\right)$ on \mathbf{R}^{d} with infinitesimal generator $\frac{1}{2} \Delta_{k}$.

Basic properties:

- $\left(X_{t}\right)$ is a martingale,
- $\left(X_{t}\right)$ is 2-selfsimilar,
- $\left(\left\|X_{t}\right\|\right)$ is a Bessel process (this property characterizes Dunkl processes among martingales (Gallardo, Yor),
- X_{t} jumps from x to $w x, w \in W$.

RADIAL (W-INVARIANT) DUNKL PROCESS

Multidimensional Bessel processes

RADIAL (W-INVARIANT) DUNKL PROCESS

Multidimensional Bessel processes

Let Π be the canonical W-projection on the positive Weyl chamber $\overline{C^{+}}$(i.e. $\Pi(x)$ is the unique point of the orbit $W x$ which lies in C^{+}).

RADIAL (W-INVARIANT) DUNKL PROCESS

Multidimensional Bessel processes

Let Π be the canonical W-projection on the positive Weyl chamber $\overline{C^{+}}$(i.e. $\Pi(x)$ is the unique point of the orbit $W x$ which lies in $\overline{C^{+}}$).
The process $X_{t}^{W}:=\Pi\left(X_{t}\right)$ is called the radial (W-invariant) Dunkl process or multidimensional Bessel process. X_{t}^{W} is a continuous diffusion with generator

$$
\mathcal{L}_{k}^{W} u(x)=\frac{1}{2} \Delta u(x)+\sum_{\alpha \in \Sigma^{+}} k(\alpha) \frac{\langle\alpha, \nabla u(x)\rangle}{\langle\alpha, x\rangle}
$$

RADIAL (W-INVARIANT) DUNKL PROCESS

Multidimensional Bessel processes

Let Π be the canonical W-projection on the positive Weyl chamber $\overline{C^{+}}$(i.e. $\Pi(x)$ is the unique point of the orbit $W x$ which lies in $\overline{C^{+}}$).
The process $X_{t}^{W}:=\Pi\left(X_{t}\right)$ is called the radial (W-invariant) Dunkl process or multidimensional Bessel process. X_{t}^{W} is a continuous diffusion with generator

$$
\mathcal{L}_{k}^{W} u(x)=\frac{1}{2} \Delta u(x)+\sum_{\alpha \in \Sigma^{+}} k(\alpha) \frac{\langle\alpha, \nabla u(x)\rangle}{\langle\alpha, x\rangle}
$$

Theory of Dunkl processes: Gallardo-Yor, Schapira, Demni, Chibiryakov, Voit, Gallardo-Rejeb,...

$(d=\operatorname{RANK}(\Sigma)+1)$ RADIAL DUNKL PROCESS FOR $k(\alpha) \equiv 1$ IS THE BROWNIAN MOTION CONDITIONED TO STAY IN $\overline{C^{+}}$

$(d=\operatorname{RANK}(\Sigma)+1)$ RADIAL DUNKL PROCESS FOR $k(\alpha) \equiv 1$ IS THE BROWNIAN MOTION CONDITIONED TO STAY IN $\overline{C^{+}}$

Let $\pi(x)=\prod_{\alpha \in \Sigma^{+}} \alpha(x)$.
For example, if $\Sigma=A_{r-1}$ then $\pi(x)=\prod_{i>j}\left(x_{i}-x_{j}\right)$, the Vandermonde determinant.

$(d=\operatorname{RANK}(\Sigma)+1)$ RADIAL DUNKL PROCESS FOR $k(\alpha) \equiv 1$ IS THE BROWNIAN MOTION CONDITIONED TO STAY IN $\overline{C^{+}}$

$$
\text { Let } \pi(x)=\prod_{\alpha \in \Sigma^{+}} \alpha(x) \text {. }
$$

For example, if $\Sigma=A_{r-1}$ then $\pi(x)=\prod_{i>j}\left(x_{i}-x_{j}\right)$, the Vandermonde determinant.
The generator of X_{t}^{W} is then

$$
\Delta^{W} u:=\mathcal{L}_{k \equiv 1}^{W} u=\frac{1}{2} \Delta u+\frac{\langle\nabla \pi, \nabla u\rangle}{\pi}=\pi^{-1} \frac{1}{2} \Delta^{\mathbf{R}^{r}}(\pi u)
$$

$(d=\operatorname{RANK}(\Sigma)+1)$ RADIAL DUNKL PROCESS FOR $k(\alpha) \equiv 1$ IS THE BROWNIAN MOTION CONDITIONED TO STAY IN $\overline{C^{+}}$

Let $\pi(x)=\prod_{\alpha \in \Sigma^{+}} \alpha(x)$.
For example, if $\Sigma=A_{r-1}$ then $\pi(x)=\prod_{i>j}\left(x_{i}-x_{j}\right)$, the Vandermonde determinant.
The generator of X_{t}^{W} is then

$$
\Delta^{W} u:=\mathcal{L}_{k=1}^{W} u=\frac{1}{2} \Delta u+\frac{\langle\nabla \pi, \nabla u\rangle}{\pi}=\pi^{-1} \frac{1}{2} \Delta^{\mathrm{R}^{r}}(\pi u) .
$$

When a probabilist looks at the last formula, they see in it the generator of the Doob h-transform with the excessive (here harmonic) function $h=\pi(x)$.

$(d=\operatorname{RANK}(\Sigma)+1)$ RADIAL DUNKL PROCESS FOR $k(\alpha) \equiv 1$ IS THE BROWNIAN MOTION CONDITIONED TO STAY IN $\overline{C^{+}}$

Let $\pi(x)=\prod_{\alpha \in \Sigma^{+}} \alpha(x)$.
For example, if $\Sigma=A_{r-1}$ then $\pi(x)=\prod_{i>j}\left(x_{i}-x_{j}\right)$, the Vandermonde determinant.
The generator of X_{t}^{W} is then

$$
\Delta^{W} u:=\mathcal{L}_{k=1}^{W} u=\frac{1}{2} \Delta u+\frac{\langle\nabla \pi, \nabla u\rangle}{\pi}=\pi^{-1} \frac{1}{2} \Delta^{\mathrm{R}^{r}}(\pi u) .
$$

When a probabilist looks at the last formula, they see in it the generator of the Doob h-transform with the excessive (here harmonic) function $h=\pi(x)$.
For the root system A_{r-1} on \mathbf{R}^{r}, the operator Δ^{W} is the generator of the Dyson Brownian Motion on \mathbf{R}^{r}, i.e. defined as the r Brownian independent particles $B_{t}^{(1)}, \ldots, B_{t}^{(r)}$ conditioned not to collide.

DYSON BROWNIAN MOTION IN THE WEYL CHAMBER $\overline{C^{+}}(k(\alpha) \equiv 1)$

DYSON BROWNIAN MOTION IN THE WEYL CHAMBER $\overline{C^{+}}(k(\alpha) \equiv 1)$

The Dyson Brownian Motion D_{t}^{\sum} on the positive Weyl chamber $\overline{C^{+}}$is defined as the h-Doob transform of the Brownian Motion on \mathbf{R}^{d}, with $h=\pi$, i.e. its transition density is equal to

$$
p_{t}^{\mathrm{D}}(X, Y)=\frac{\pi(Y)}{\pi(X)} p_{t}^{\text {killed }}(X, Y)
$$

where $p_{t}^{\text {killed }}(X, Y)$ is the transition density of the Brownian Motion killed at the first strictly positive time of touching ∂C^{+}.

DYSON BROWNIAN MOTION IN THE WEYL CHAMBER $\overline{C^{+}}(k(\alpha) \equiv 1)$

The Dyson Brownian Motion D_{t}^{\sum} on the positive Weyl chamber $\overline{C^{+}}$is defined as the h-Doob transform of the Brownian Motion on \mathbf{R}^{d}, with $h=\pi$, i.e. its transition density is equal to

$$
p_{t}^{\mathrm{D}}(X, Y)=\frac{\pi(Y)}{\pi(X)} p_{t}^{\mathrm{killed}}(X, Y)
$$

where $p_{t}^{\text {killed }}(X, Y)$ is the transition density of the Brownian Motion killed at the first strictly positive time of touching ∂C^{+}.

We have

$$
p_{t}^{\text {killed }}(X, Y)=\operatorname{det}\left(g_{t}\left(x_{i}, y_{j}\right)\right)
$$

where g_{t} the classical 1-dimensional heat kernel (Karlin, MacGregor).

DYSON BROWNIAN MOTION IN THE WEYL CHAMBER $\overline{C^{+}}(k(\alpha) \equiv 1)$

The only difference with the invariant Dunkl case $k=1$ is that the invariant measure $\pi^{2}(Y) d Y$ is used in Dunkl analysis, but it does not appear for the integral kernels in the Dyson Brownian Motion case.

DYSON BROWNIAN MOTION IN THE WEYL CHAMBER $\overline{C^{+}}(k(\alpha) \equiv 1)$

The only difference with the invariant Dunkl case $k=1$ is that the invariant measure $\pi^{2}(Y) d Y$ is used in Dunkl analysis, but it does not appear for the integral kernels in the Dyson Brownian Motion case.

The Brownian motion in the Weyl chamber $\overline{C^{+}}$was studied by Grabiner (IHP 1999), Biane, Bougerol, O'Connell (Duke 2005) and many others.

PROBABILISTIC POINT OF VIEW: DYSON BROWNIAN MOTION $(k(\alpha) \equiv 1)$

PROBABILISTIC POINT OF VIEW: DYSON BROWNIAN MOTION $(k(\alpha) \equiv 1)$

For the root system A_{r-1} on \mathbf{R}^{r}, the operator Δ_{k}^{W} is the generator of the k-Dyson Brownian Motion D_{t} on \mathbf{R}^{r}.

PROBABILISTIC POINT OF VIEW: DYSON BROWNIAN MOTION $(k(\alpha) \equiv 1)$

For the root system A_{r-1} on \mathbf{R}^{r}, the operator Δ_{k}^{W} is the generator of the k-Dyson Brownian Motion D_{t} on \mathbf{R}^{r}.

For $k=1$, the 1-Dyson Brownian Motion coincides with the classical Dyson BM, defined as the r Brownian independent particles $B_{t}^{(1)}, \ldots, B_{t}^{(r)}$ conditioned not to collide.

PROBABILISTIC POINT OF VIEW: DYSON BROWNIAN MOTION $(k(\alpha) \equiv 1)$

For the root system A_{r-1} on \mathbf{R}^{r}, the operator Δ_{k}^{W} is the generator of the k-Dyson Brownian Motion D_{t} on \mathbf{R}^{r}.

For $k=1$, the 1-Dyson Brownian Motion coincides with the classical Dyson BM, defined as the r Brownian independent particles $B_{t}^{(1)}, \ldots, B_{t}^{(r)}$ conditioned not to collide.

The Brownian motion lives in the whole vector space \mathbf{R}^{r}.

PROBABILISTIC POINT OF VIEW: DYSON BROWNIAN MOTION $(k(\alpha) \equiv 1)$

For the root system A_{r-1} on \mathbf{R}^{r}, the operator Δ_{k}^{W} is the generator of the k-Dyson Brownian Motion D_{t} on \mathbf{R}^{r}.

For $k=1$, the 1-Dyson Brownian Motion coincides with the classical Dyson BM, defined as the r Brownian independent particles $B_{t}^{(1)}, \ldots, B_{t}^{(r)}$ conditioned not to collide.

The Brownian motion lives in the whole vector space \mathbf{R}^{r}.
The Dyson Brownian motion lives in the Weyl chamber $\overline{C^{+}}$.

PROBABILISTIC POINT OF VIEW: DYSON BROWNIAN MOTION $(k(\alpha) \equiv 1)$

For the root system A_{r-1} on \mathbf{R}^{r}, the operator Δ_{k}^{W} is the generator of the k-Dyson Brownian Motion D_{t} on \mathbf{R}^{r}.

For $k=1$, the 1-Dyson Brownian Motion coincides with the classical Dyson BM, defined as the r Brownian independent particles $B_{t}^{(1)}, \ldots, B_{t}^{(r)}$ conditioned not to collide.

The Brownian motion lives in the whole vector space \mathbf{R}^{r}.
The Dyson Brownian motion lives in the Weyl chamber $\overline{C^{+}}$.
The heat kernel $p_{t}^{W}(X, \cdot)$ is the density of D_{t} started at X.

PROBABILISTIC POINT OF VIEW: DYSON BROWNIAN MOTION $(k(\alpha) \equiv 1)$

For the root system A_{r-1} on \mathbf{R}^{r}, the operator Δ_{k}^{W} is the generator of the k-Dyson Brownian Motion D_{t} on \mathbf{R}^{r}.

For $k=1$, the 1-Dyson Brownian Motion coincides with the classical Dyson BM, defined as the r Brownian independent particles $B_{t}^{(1)}, \ldots, B_{t}^{(r)}$ conditioned not to collide.

The Brownian motion lives in the whole vector space \mathbf{R}^{r}.
The Dyson Brownian motion lives in the Weyl chamber $\overline{C^{+}}$.
The heat kernel $p_{t}^{W}(X, \cdot)$ is the density of D_{t} started at X.
The kernels are considered with respect to the Dunkl weight function $\omega_{k}(Y)=\prod_{\alpha \in \Sigma^{+}}|\langle\alpha, Y\rangle|^{2 k(\alpha)}$ on \mathbf{R}^{d}.
M. DE JEU (2006): FLAT RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN THE W-INVARIANT DUNKL ANALYSIS: $k=1 / 2, \mathbf{1}, 2$

M. DE JEU (2006): FLAT RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN THE W-INVARIANT DUNKL ANALYSIS: $k=1 / 2, \mathbf{1}, 2$

When $k=1 / 2,1,2$, the W-invariant Dunkl analysis is equivalent to the W-invariant analysis on flat Riemannian symmetric spaces:

M. DE JEU (2006): FLAT RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN THE W-INVARIANT DUNKL ANALYSIS: $k=1 / 2, \mathbf{1}, 2$

When $k=1 / 2,1,2$, the W-invariant Dunkl analysis is equivalent to the W-invariant analysis on flat Riemannian symmetric spaces:
$k=1 / 2$: real case

M. DE JEU (2006): FLAT RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN THE W-INVARIANT DUNKL ANALYSIS: $k=1 / 2, \mathbf{1}, 2$

When $k=1 / 2,1,2$, the W-invariant Dunkl analysis is equivalent to the W-invariant analysis on flat Riemannian symmetric spaces:
$k=1 / 2$: real case
$k=1$: complex case

M. DE JEU (2006): FLAT RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN THE W-INVARIANT DUNKL ANALYSIS: $k=1 / 2, \mathbf{1}, 2$

When $k=1 / 2,1,2$, the W-invariant Dunkl analysis is equivalent to the W-invariant analysis on flat Riemannian symmetric spaces:
$k=1 / 2$: real case
$k=1$: complex case
$k=2$: quaternionic case

POISSON AND NEWTON KERNELS

POISSON AND NEWTON KERNELS

- Poisson kernel:

POISSON AND NEWTON KERNELS

- Poisson kernel: Harmonic measure on $\partial B(0,1)$,

POISSON AND NEWTON KERNELS

- Poisson kernel: Harmonic measure on $\partial B(0,1)$,

$$
P(x, d y) \stackrel{\text { density of }}{=} X_{\tau_{B(0,1)}}^{x},
$$

$x \in B(0,1)$.

POISSON AND NEWTON KERNELS

- Poisson kernel: Harmonic measure on $\partial B(0,1)$,

$$
P(x, d y) \stackrel{\text { density of }}{=} X_{\tau_{B(0,1)}}^{x},
$$

$x \in B(0,1)$.

- Newton kernel:

POISSON AND NEWTON KERNELS

- Poisson kernel: Harmonic measure on $\partial B(0,1)$,

$$
P(x, d y) \stackrel{\text { density of }}{=} X_{\tau_{B(0,1)}}^{x},
$$

$x \in B(0,1)$.

- Newton kernel:

$$
N(x, y)=\int_{0}^{\infty} p_{t}(x, y) d t
$$

EARLIER PAPERS: POISSON AND NEWTON KERNELS

EARLIER PAPERS: POISSON AND NEWTON KERNELS

- P.Graczyk, T. Luks, M. Rösler, On the Green function and Poisson integrals of the Dunkl Laplacian, Potential Anal. 48 (2018), 337-360.

EARLIER PAPERS: POISSON AND NEWTON KERNELS

- P.Graczyk, T. Luks, M. Rösler, On the Green function and Poisson integrals of the Dunkl Laplacian, Potential Anal. 48 (2018), 337-360.
(results on Poisson/Newton/Green kernels for the rank one case)

EARLIER PAPERS: POISSON AND NEWTON KERNELS

- P.Graczyk, T. Luks, M. Rösler, On the Green function and Poisson integrals of the Dunkl Laplacian, Potential Anal. 48 (2018), 337-360.
(results on Poisson/Newton/Green kernels for the rank one case)
- P.Graczyk, P. Sawyer, Integral kernels on complex symmetric spaces and for the Dyson Brownian Motion, Math.
Nachrichten (2022), 1-30.

EARLIER PAPERS: POISSON AND NEWTON KERNELS

- P.Graczyk, T. Luks, M. Rösler, On the Green function and Poisson integrals of the Dunkl Laplacian, Potential Anal. 48 (2018), 337-360.
(results on Poisson/Newton/Green kernels for the rank one case)
- P.Graczyk, P. Sawyer, Integral kernels on complex symmetric spaces and for the Dyson Brownian Motion, Math.
Nachrichten (2022), 1-30.
- P.Graczyk, T. Luks, P. Sawyer, Potential kernels for radial Dunkl Laplacians, Canadian Journal of Mathematics, 2022. (complex and rank one case)

SOME IMPORTANT NOTATION

SOME IMPORTANT NOTATION

Given a domain D;

SOME IMPORTANT NOTATION

Given a domain D;

- $f(x) \asymp g(x)$ means that there exists $C>0$ such that $C^{-1} f(x) \leq f(x) \leq C g(x)$ for all $x \in D$.

SOME IMPORTANT NOTATION

Given a domain D;

- $f(x) \asymp g(x)$ means that there exists $C>0$ such that $C^{-1} f(x) \leq f(x) \leq C g(x)$ for all $x \in D$.
- $f(x) \lesssim g(x)$ means that there exists $C>0$ such that $f(x) \leq C g(x)$ for all $x \in D$.

SOME IMPORTANT NOTATION

Given a domain D;

- $f(x) \asymp g(x)$ means that there exists $C>0$ such that $C^{-1} f(x) \leq f(x) \leq C g(x)$ for all $x \in D$.
- $f(x) \lesssim g(x)$ means that there exists $C>0$ such that $f(x) \leq C g(x)$ for all $x \in D$.
- $f(x) \gtrsim g(x)$ means that there exists $C>0$ such that $f(x) \geq C g(x)$ for all $x \in D$.

COMPARISON OF CLASSICAL AND DUNKL POISSON AND NEWTON KERNELS

COMPARISON OF CLASSICAL AND DUNKL POISSON AND NEWTON KERNELS

The estimates obtained in the complex and rank 1 cases have an elegant form

$$
\mathcal{K}^{W}(X, Y) \asymp
$$

COMPARISON OF CLASSICAL AND DUNKL POISSON AND NEWTON KERNELS

The estimates obtained in the complex and rank 1 cases have an elegant form

$$
\mathcal{K}^{W}(X, Y) \asymp \frac{\mathcal{K}^{\mathrm{R}^{d}}(X, Y)}{}
$$

COMPARISON OF CLASSICAL AND DUNKL POISSON AND NEWTON KERNELS

The estimates obtained in the complex and rank 1 cases have an elegant form

$$
\mathcal{K}^{W}(X, Y) \asymp \frac{\mathcal{K}^{\mathbf{R}^{d}}(X, Y)}{\prod_{\alpha>0}\left|X-\sigma_{\alpha} Y\right|^{2 k(\alpha)}}
$$

where $\mathcal{K}^{\mathbf{R}^{d}}$ is a classical kernel and $\mathcal{K}^{W}(x, y)$ its radial Dunkl counterpart.

COMPARISON OF CLASSICAL AND DUNKL POISSON AND NEWTON KERNELS

The estimates obtained in the complex and rank 1 cases have an elegant form

$$
\mathcal{K}^{W}(X, Y) \asymp \frac{\mathcal{K}^{\mathbf{R}^{d}}(X, Y)}{\prod_{\alpha>0}\left|X-\sigma_{\alpha} Y\right|^{2 k(\alpha)}}
$$

where $\mathcal{K}^{\mathbf{R}^{d}}$ is a classical kernel and $\mathcal{K}^{W}(x, y)$ its radial Dunkl counterpart. Equivalently

$$
\mathcal{K}^{W}(X, Y) \asymp
$$

COMPARISON OF CLASSICAL AND DUNKL POISSON AND NEWTON KERNELS

The estimates obtained in the complex and rank 1 cases have an elegant form

$$
\mathcal{K}^{W}(X, Y) \asymp \frac{\mathcal{K}^{\mathbf{R}^{d}}(X, Y)}{\prod_{\alpha>0}\left|X-\sigma_{\alpha} Y\right|^{2 k(\alpha)}}
$$

where $\mathcal{K}^{\mathbf{R}^{d}}$ is a classical kernel and $\mathcal{K}^{W}(x, y)$ its radial Dunkl counterpart. Equivalently

$$
\mathcal{K}^{W}(X, Y) \asymp \quad \mathcal{K}^{\mathrm{R}^{d}}(X, Y)
$$

COMPARISON OF CLASSICAL AND DUNKL POISSON AND NEWTON KERNELS

The estimates obtained in the complex and rank 1 cases have an elegant form

$$
\mathcal{K}^{W}(X, Y) \asymp \frac{\mathcal{K}^{\mathbf{R}^{d}}(X, Y)}{\prod_{\alpha>0}\left|X-\sigma_{\alpha} Y\right|^{2 k(\alpha)}},
$$

where $\mathcal{K}^{\mathbf{R}^{d}}$ is a classical kernel and $\mathcal{K}^{W}(x, y)$ its radial Dunkl counterpart. Equivalently

$$
\mathcal{K}^{W}(X, Y) \asymp \frac{\mathcal{K}^{\mathbf{R}^{d}}(X, Y)}{\prod_{\alpha \in \Sigma^{+}}\left(|X-Y|^{2}+\alpha(X) \alpha(Y)\right)^{k(\alpha)}}
$$

COMPARISON OF CLASSICAL AND DUNKL POISSON AND NEWTON KERNELS

The estimates obtained in the complex and rank 1 cases have an elegant form

$$
\mathcal{K}^{W}(X, Y) \asymp \frac{\mathcal{K}^{\mathbf{R}^{d}}(X, Y)}{\prod_{\alpha>0}\left|X-\sigma_{\alpha} Y\right|^{2 k(\alpha)}}
$$

where $\mathcal{K}^{\mathbf{R}^{d}}$ is a classical kernel and $\mathcal{K}^{W}(x, y)$ its radial Dunkl counterpart. Equivalently

$$
\mathcal{K}^{W}(X, Y) \asymp \frac{\mathcal{K}^{\mathbf{R}^{d}}(X, Y)}{\prod_{\alpha \in \Sigma^{+}}\left(|X-Y|^{2}+\alpha(X) \alpha(Y)\right)^{k(\alpha)}}
$$

Conjecture

The above estimates are always true, with the corrections:
$\alpha \in \Sigma^{++}=$set of undivisible positive roots, the power $k(\alpha)+k(2 \alpha)$ in the place of $k(\alpha)$.

REFERENCES

REFERENCES

- P. Graczyk and P. Sawyer. Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A_{n}, Comptes Rendus Mathématiques, 359 (2021), 427-437.

REFERENCES

- P. Graczyk and P. Sawyer. Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A_{n}, Comptes Rendus Mathématiques, 359 (2021), 427-437.
- P. Graczyk and P. Sawyer. Sharp estimates for W-invariant Dunkl and heat kernels in the A_{n} case (2021). Bulletin des Sciences Mathématiques Volume 186, September 2023, 103271.

REFERENCES

- P. Graczyk and P. Sawyer. Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A_{n}, Comptes Rendus Mathématiques, 359 (2021), 427-437.
- P. Graczyk and P. Sawyer. Sharp estimates for W-invariant Dunkl and heat kernels in the A_{n} case (2021). Bulletin des Sciences Mathématiques Volume 186, September 2023, 103271.
- P. Graczyk and P. Sawyer. Sharp estimates for the hypergeometric functions related to root systems of type A and of rank 1 (2022), arXiv:2203.10025, 1-13. To appear in Colloquium Mathematicum (2023).

THE HEAT KERNEL IN THE DUNKL SETTING

THE HEAT KERNEL IN THE DUNKL SETTING

It is of note that in the Dunkl setting, knowledge of the Dunkl kernel $E_{k}(X, Y)$ is equivalent to knowledge of the heat kernel:

THE HEAT KERNEL IN THE DUNKL SETTING

It is of note that in the Dunkl setting, knowledge of the Dunkl kernel $E_{k}(X, Y)$ is equivalent to knowledge of the heat kernel:

If $\gamma=\sum_{\alpha>0} k(\alpha)$ then

$$
p_{t}(X, Y)=C_{k} t^{-\frac{d}{2}-\gamma} e^{\frac{-|X|^{2}-|Y|^{2}}{2 t}} E_{k}\left(X, \frac{Y}{t}\right)
$$

THE HEAT KERNEL IN THE DUNKL SETTING

It is of note that in the Dunkl setting, knowledge of the Dunkl kernel $E_{k}(X, Y)$ is equivalent to knowledge of the heat kernel:

If $\gamma=\sum_{\alpha>0} k(\alpha)$ then

$$
p_{t}(X, Y)=C_{k} t^{-\frac{d}{2}-\gamma} e^{\frac{-|X|^{2}-|Y|^{2}}{2 t}} E_{k}\left(X, \frac{Y}{t}\right)
$$

In the Weyl-invariant setting:

$$
p_{t}^{W}(X, Y)=C_{k} t^{-\frac{d}{2}-\gamma} e^{\frac{-|X|^{2}-|Y|^{2}}{2 t}} \psi_{X}\left(\frac{Y}{t}\right)
$$

SHARP ESTIMATES: A CONJECTURE

SHARP ESTIMATES: A CONJECTURE

- Given a root system Σ on \mathbf{R}^{d}, let Σ^{++}be the set of indivisible positive roots.

SHARP ESTIMATES: A CONJECTURE

- Given a root system Σ on \mathbf{R}^{d}, let Σ^{++}be the set of indivisible positive roots. For $\lambda, X \in \overline{\mathfrak{a}^{+}}$, we have

SHARP ESTIMATES: A CONJECTURE

- Given a root system Σ on \mathbf{R}^{d}, let Σ^{++}be the set of indivisible positive roots. For $\lambda, X \in \mathfrak{a}^{+}$, we have

$$
\psi_{\lambda}\left(e^{X}\right) \asymp e^{\lambda(X)} \prod_{\alpha \in \Sigma^{++}} \frac{1}{(1+\alpha(X) \alpha(\lambda))^{k(\alpha)+k(2 \alpha)}}
$$

SHARP ESTIMATES: A CONJECTURE

- Given a root system Σ on \mathbf{R}^{d}, let Σ^{++}be the set of indivisible positive roots. For $\lambda, X \in \mathfrak{a}^{+}$, we have

$$
\psi_{\lambda}\left(e^{X}\right) \asymp e^{\lambda(X)} \prod_{\alpha \in \Sigma^{++}} \frac{1}{(1+\alpha(X) \alpha(\lambda))^{k(\alpha)+k(2 \alpha)}}
$$

which is equivalent to: for $X, Y \in \overline{\mathfrak{a}^{+}}$

$$
p_{t}^{W}(X, Y) \asymp t^{-\frac{d}{2}} e^{\frac{-|X-Y|^{2}}{2 t}} \prod_{\alpha \in \Sigma^{++}} \frac{1}{(t+\alpha(X) \alpha(Y))^{k(\alpha)+k(2 \alpha)}}
$$

CONJECTURE ON THE ESTIMATES OF THE WEYL INVARIANT DUNKL HEAT KERNEL $p_{t}^{w}(x, y)$ FOR ANY ROOT SYSTEM

CONJECTURE ON THE ESTIMATES OF THE WEYL INVARIANT DUNKL HEAT KERNEL $p_{t}^{w}(x, y)$ FOR ANY ROOT SYSTEM

For any $t>0, X, Y \in \overline{\mathfrak{a}^{+}}$

$$
p_{t}^{W}(X, Y) \asymp \frac{t^{-d / 2} e^{-|X-Y|^{2} /(2 t)}}{}
$$

CONJECTURE ON THE ESTIMATES OF THE WEYL INVARIANT DUNKL HEAT KERNEL $p_{t}^{w}(x, y)$ FOR ANY ROOT SYSTEM

For any $t>0, X, Y \in \overline{\mathfrak{a}^{+}}$

$$
p_{t}^{W}(X, Y) \asymp \frac{t^{-d / 2} e^{-|X-Y|^{2} /(2 t)}}{\prod_{\alpha \in \Sigma^{++}}(t+\alpha(X) \alpha(Y))^{k(\alpha)+k(2 \alpha)}} .
$$

CONJECTURE ON THE ESTIMATES OF THE WEYL INVARIANT DUNKL HEAT KERNEL $p_{t}^{w}(x, y)$ FOR ANY ROOT SYSTEM

For any $t>0, X, Y \in \overline{\mathfrak{a}^{+}}$

$$
p_{t}^{W}(X, Y) \asymp \frac{t^{-d / 2} e^{-|X-Y|^{2} /(2 t)}}{\prod_{\alpha \in \Sigma^{++}}(t+\alpha(X) \alpha(Y))^{k(\alpha)+k(2 \alpha)}} .
$$

Compare with the estimates of J.P. Anker, J. Dziubański, A. Hejna (2019-2022) for $p_{t}(X, Y)$, in the general case.

QUESTION: Could the Conjecture be true in general for $p_{t}^{W}(X, Y)$?

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

In the case of the root system of type A_{n}, the conjecture becomes:

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

In the case of the root system of type A_{n}, the conjecture becomes:

$$
\psi_{\lambda}\left(e^{x}\right) \asymp e^{\lambda(X)} \prod_{i<j} \frac{1}{\left(1+\left(\lambda_{i}-\lambda_{j}\right)\left(x_{i}-x_{j}\right)\right)^{k}}
$$

where $X=\operatorname{diag}\left[x_{1}, \ldots x_{n+1}\right], \lambda(X)=\sum_{j=1}^{n+1} \lambda_{j} x_{j}, x_{j} \geq x_{j+1}$ and $\lambda_{j} \geq \lambda_{j+1}$ whenever $i<j$.

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

In the case of the root system of type A_{n}, the conjecture becomes:

$$
\psi_{\lambda}\left(e^{x}\right) \asymp e^{\lambda(X)} \prod_{i<j} \frac{1}{\left(1+\left(\lambda_{i}-\lambda_{j}\right)\left(x_{i}-x_{j}\right)\right)^{k}}
$$

where $X=\operatorname{diag}\left[x_{1}, \ldots x_{n+1}\right], \lambda(X)=\sum_{j=1}^{n+1} \lambda_{j} x_{j}, x_{j} \geq x_{j+1}$ and $\lambda_{j} \geq \lambda_{j+1}$ whenever $i<j$.

For the heat kernel, this becomes

$$
p_{t}^{W}(X, Y) \asymp t^{-\frac{d}{2}} e^{\frac{-|X-Y|^{2}}{2 t}} \prod_{i<j} \frac{1}{\left(t+\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)\right)^{k}}
$$

when $x_{j} \geq x_{j+1}$ and $y_{j} \geq y_{j+1}$ for $i<j$.

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

Idea behind the proof: to prove the conjecture in this case, one uses the recurrence formula:

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

Idea behind the proof: to prove the conjecture in this case, one uses the recurrence formula:

$$
\begin{aligned}
\psi_{\lambda}\left(e^{X}\right)= & e^{\lambda(X)} \text { if } n=1 \text { and } \\
\psi_{\lambda}\left(e^{X}\right)= & \frac{\Gamma(k(n+1))}{(\Gamma(k))^{n+1}} e^{\lambda_{n+1} \sum_{r=1}^{n+1} x_{r}} \pi(X)^{1-2 k} \int_{x_{n+1}}^{x_{n}} \cdots \int_{x_{2}}^{x_{1}} \psi_{\lambda_{0}}\left(e^{Y}\right) \\
& {\left[\prod_{i=1}^{n}\left(\prod_{j=1}^{i}\left(x_{j}-y_{i}\right) \prod_{j=i+1}^{n+1}\left(y_{i}-x_{j}\right)\right)\right]^{k-1} } \\
& \prod_{i<j \leq n}\left(y_{i}-y_{j}\right) d y_{1} \cdots d y_{n}
\end{aligned}
$$

where $\lambda_{0}(U)=\sum_{r=1}^{n}\left(\lambda_{r}-\lambda_{n+1}\right) u_{k}$ and $\pi(X)=\prod_{i<j \leq n+1}\left(x_{i}-x_{j}\right)$.

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS
We start with the rank one case: this is essentially

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

We start with the rank one case: this is essentially

$$
\int_{x_{2}}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1}
$$

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

We start with the rank one case: this is essentially

$$
\begin{aligned}
& \int_{x_{2}}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1}
\end{aligned}
$$

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

We start with the rank one case: this is essentially

$$
\begin{aligned}
& \int_{x_{2}}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp\left(x_{1}-x_{2}\right)^{k-1} \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1} d y_{1}
\end{aligned}
$$

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

We start with the rank one case: this is essentially

$$
\begin{aligned}
& \int_{x_{2}}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp\left(x_{1}-x_{2}\right)^{k-1} \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1} d y_{1} \\
& =\left(x_{1}-x_{2}\right)^{k-1}\left(\lambda_{1}-\lambda_{2}\right)^{-k} \int_{0}^{\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-x_{2}\right) / 2} e^{-u} u^{k-1} d u
\end{aligned}
$$

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

We start with the rank one case: this is essentially

$$
\begin{aligned}
& \int_{x_{2}}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp\left(x_{1}-x_{2}\right)^{k-1} \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1} d y_{1} \\
& =\left(x_{1}-x_{2}\right)^{k-1}\left(\lambda_{1}-\lambda_{2}\right)^{-k} \int_{0}^{\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-x_{2}\right) / 2} e^{-u} u^{k-1} d u \\
& \asymp\left(x_{1}-x_{2}\right)^{k-1}\left(\frac{\left(x_{1}-x_{2}\right) / 2}{1+\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-x_{2}\right) / 2}\right)^{k}
\end{aligned}
$$

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

We start with the rank one case: this is essentially

$$
\begin{aligned}
& \int_{x_{2}}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1}\left(y_{1}-x_{2}\right)^{k-1} d y_{1} \\
& \asymp\left(x_{1}-x_{2}\right)^{k-1} \int_{\left(x_{1}+x_{2}\right) / 2}^{x_{1}} e^{-\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-y_{1}\right)}\left(x_{1}-y_{1}\right)^{k-1} d y_{1} \\
& =\left(x_{1}-x_{2}\right)^{k-1}\left(\lambda_{1}-\lambda_{2}\right)^{-k} \int_{0}^{\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-x_{2}\right) / 2} e^{-u} u^{k-1} d u \\
& \asymp\left(x_{1}-x_{2}\right)^{k-1}\left(\frac{\left(x_{1}-x_{2}\right) / 2}{1+\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-x_{2}\right) / 2}\right)^{k}
\end{aligned}
$$

The rank 1 case is very representative of the general case.

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS
Next step:

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

Next step: replacing $\psi_{\lambda_{0}}\left(e^{Y}\right)$ by its sharp estimate (proof by induction) and multiplying the whole thing by $e^{-\lambda(X)} \pi(X)^{2 k-1}$, the conjecture is equivalent to

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

Next step: replacing $\psi_{\lambda_{0}}\left(e^{Y}\right)$ by its sharp estimate (proof by induction) and multiplying the whole thing by $e^{-\lambda(X)} \pi(X)^{2 k-1}$, the conjecture is equivalent to

$$
\begin{aligned}
I^{(n)} & =\int_{x_{n+1}}^{x_{n}} \cdots \int_{x_{2}}^{x_{1}} e^{-\sum_{i=1}^{n}\left(\lambda_{i}-\lambda_{n+1}\right)\left(x_{i}-y_{i}\right)} \\
& \left(\prod_{i \leq j \leq n}\left(x_{i}-y_{j}\right) \prod_{i<j \leq n+1}\left(y_{i}-x_{j}\right)\right)^{k-1} \\
& \prod_{i<j \leq n} \frac{y_{i}-y_{j}}{\left(1+\left(\lambda_{i}-\lambda_{j}\right)\left(y_{i}-y_{j}\right)\right)^{k}} d y_{1} \ldots d y_{n} \\
& \frac{\pi(X)^{2 k-1}}{\prod_{i<j \leq n+1}\left(\left(1+\left(\lambda_{i}-\lambda_{j}\right)\left(x_{i}-x_{j}\right)\right)^{k}\right.} .
\end{aligned}
$$

THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

Next step: replacing $\psi_{\lambda_{0}}\left(e^{Y}\right)$ by its sharp estimate (proof by induction) and multiplying the whole thing by $e^{-\lambda(X)} \pi(X)^{2 k-1}$, the conjecture is equivalent to

$$
\begin{aligned}
I^{(n)}= & \int_{x_{n+1}}^{x_{n}} \cdots \int_{x_{2}}^{x_{1}} e^{-\sum_{i=1}^{n}\left(\lambda_{i}-\lambda_{n+1}\right)\left(x_{i}-y_{i}\right)} \\
& \left(\prod_{i \leq j \leq n}\left(x_{i}-y_{j}\right) \prod_{i<j \leq n+1}\left(y_{i}-x_{j}\right)\right)^{k-1} \\
& \prod_{i<j \leq n} \frac{y_{i}-y_{j}}{\left(1+\left(\lambda_{i}-\lambda_{j}\right)\left(y_{i}-y_{j}\right)\right)^{k}} d y_{1} \ldots d y_{n} \\
& \frac{\pi(X)^{2 k-1}}{\prod_{i<j \leq n+1}\left(\left(1+\left(\lambda_{i}-\lambda_{j}\right)\left(x_{i}-x_{j}\right)\right)^{k}\right.} .
\end{aligned}
$$

...to be proven!

W-INVARIANT DUNKL NEWTON KERNEL

W-INVARIANT DUNKL NEWTON KERNEL

The W-invariant Dunkl Newton kernel $N^{W}(X, Y)$ is the kernel of the inverse operator of the Dunkl Laplacian Δ^{W}.

W-INVARIANT DUNKL NEWTON KERNEL

The W-invariant Dunkl Newton kernel $N^{W}(X, Y)$ is the kernel of the inverse operator of the Dunkl Laplacian Δ^{W}.

It is the fundamental solution of the Cauchy problem

$$
\Delta^{W} u=f
$$

where f is given and $|u(x)| \rightarrow 0$ as $x \rightarrow \infty$.

W-INVARIANT DUNKL NEWTON KERNEL

Corollary
Consider a root system of type A. For $X, Y \in \overline{\mathfrak{a}^{+}}$and for fixed $d \geq 3$ and $k>0$, we have

W-INVARIANT DUNKL NEWTON KERNEL

Corollary
Consider a root system of type A. For $X, Y \in \overline{\mathfrak{a}^{+}}$and for fixed $d \geq 3$ and $k>0$, we have

$$
N^{W}(X, Y) \asymp \frac{1}{|X-Y|^{d-2} \prod_{\alpha \in \Sigma^{+}}\left|X-\sigma_{\alpha} Y\right|^{2 k}}
$$

W-INVARIANT DUNKL NEWTON KERNEL

Corollary
Consider a root system of type A. For $X, Y \in \overline{\mathfrak{a}^{+}}$and for fixed $d \geq 3$ and $k>0$, we have

$$
\begin{aligned}
N^{W}(X, Y) & \asymp \frac{1}{|X-Y|^{d-2} \prod_{\alpha \in \Sigma^{+}}\left|X-\sigma_{\alpha} Y\right|^{2 k}} \\
& \asymp \frac{1}{|X-Y|^{d-2} \prod_{\alpha \in \Sigma^{+}}\left(|X-Y|^{2}+\alpha(X) \alpha(Y)\right)^{k}}
\end{aligned}
$$

W-INVARIANT DUNKL NEWTON KERNEL

Corollary
Consider a root system of type A. For $X, Y \in \overline{\mathfrak{a}^{+}}$and for fixed $d \geq 3$ and $k>0$, we have

$$
\begin{aligned}
N^{W}(X, Y) & \asymp \frac{1}{|X-Y|^{d-2} \prod_{\alpha \in \Sigma^{+}}\left|X-\sigma_{\alpha} Y\right|^{2 k}} \\
& \asymp \frac{1}{|X-Y|^{d-2} \prod_{\alpha \in \Sigma^{+}}\left(|X-Y|^{2}+\alpha(X) \alpha(Y)\right)^{k}}
\end{aligned}
$$

We prove a similar result in the case $d=2$.

PROOF

PROOF

We use the formula

$$
N^{W}(X, Y)=\int_{0}^{\infty} p_{t}^{W}(X, Y) d t
$$

where $p_{t}^{W}(X, Y)$ is the heat kernel of Δ^{W}.

PROOF

We use the formula

$$
N^{W}(X, Y)=\int_{0}^{\infty} p_{t}^{W}(X, Y) d t
$$

where $p_{t}^{W}(X, Y)$ is the heat kernel of Δ^{W}. With the help of

$$
\begin{aligned}
& \text { Lemma } \\
& \text { Suppose } k>0, a \geq 0, b_{i} \geq 0, a+b_{i}>0, i=1, \ldots, m \text { and } \\
& N>k m-1 \text {. Then } \\
& \qquad J:=\int_{0}^{\infty} \frac{u^{N} e^{-u} d u}{\prod_{i=1}^{m}\left(a+b_{i} u\right)^{k}} \asymp \frac{1}{\prod_{i=1}^{m}\left(a+b_{i}\right)^{k}} .
\end{aligned}
$$

HEAT SEMIGROUPS FOR FRACTIONAL POWERS OF Δ_{k}^{W}

HEAT SEMIGROUPS FOR FRACTIONAL POWERS OF Δ_{k}^{W}

Let $s \in(0,2)$. The fractional powers of the W-invariant Dunkl Laplacian

$$
\left(-\Delta_{k}^{W}\right)^{s / 2}
$$

are the infinitesimal generators of semigroups $\left(h_{t}^{W}(X, Y)\right)_{t \geq 0}$, called W-invariant Dunkl s-stable semigroups.

HEAT SEMIGROUPS FOR FRACTIONAL POWERS OF Δ_{k}^{W}

Let $s \in(0,2)$. The fractional powers of the W-invariant Dunkl Laplacian

$$
\left(-\Delta_{k}^{W}\right)^{s / 2}
$$

are the infinitesimal generators of semigroups $\left(h_{t}^{W}(X, Y)\right)_{t \geq 0}$, called W-invariant Dunkl s-stable semigroups.

Stable semigroups were studied:

HEAT SEMIGROUPS FOR FRACTIONAL POWERS OF Δ_{k}^{W}

Let $s \in(0,2)$. The fractional powers of the W-invariant Dunkl Laplacian

$$
\left(-\Delta_{k}^{W}\right)^{s / 2}
$$

are the infinitesimal generators of semigroups $\left(h_{t}^{W}(X, Y)\right)_{t \geq 0}$, called W-invariant Dunkl s-stable semigroups.

Stable semigroups were studied:

- on Riemannian symmetric spaces of noncompact type by Getoor (1961), Graczyk and Stós (2004),

HEAT SEMIGROUPS FOR FRACTIONAL POWERS OF Δ_{k}^{W}

Let $s \in(0,2)$. The fractional powers of the W-invariant Dunkl Laplacian

$$
\left(-\Delta_{k}^{W}\right)^{s / 2}
$$

are the infinitesimal generators of semigroups $\left(h_{t}^{W}(X, Y)\right)_{t \geq 0}$, called W-invariant Dunkl s-stable semigroups.

Stable semigroups were studied:

- on Riemannian symmetric spaces of noncompact type by Getoor (1961), Graczyk and Stós (2004),
- in the Dunkl context
by Jedidi (2021), Rejeb (2021), Luks (2022).

ESTIMATES OF s-STABLE DUNKL HEAT SEMIGROUPS

ESTIMATES OF s-STABLE DUNKL HEAT SEMIGROUPS

Theorem (PG, PS 2022)
Consider the W-invariant Dunkl Laplacian in the A_{n} case with multiplicity $k>0$. Then for $X, Y \in \overline{\mathfrak{a}^{+}}$,

ESTIMATES OF s-STABLE DUNKL HEAT SEMIGROUPS

Theorem (PG, PS 2022)
Consider the W-invariant Dunkl Laplacian in the A_{n} case with multiplicity $k>0$. Then for $X, Y \in \overline{\mathfrak{a}^{+}}$,

$$
h_{t}^{W}(X, Y) \asymp \frac{h_{t}^{R^{d}}(X, Y)}{\prod_{\alpha>0}\left(t^{2 / s}+\left|X-\sigma_{\alpha} Y\right|^{2}\right)^{k}}
$$

ESTIMATES OF s-STABLE DUNKL HEAT SEMIGROUPS

Theorem (PG, PS 2022)
Consider the W-invariant Dunkl Laplacian in the A_{n} case with multiplicity $k>0$. Then for $X, Y \in \overline{\mathfrak{a}^{+}}$,

$$
\begin{aligned}
h_{t}^{W}(X, Y) & \asymp \frac{h_{t}^{R^{d}}(X, Y)}{\prod_{\alpha>0}\left(t^{2 / s}+\left|X-\sigma_{\alpha} Y\right|^{2}\right)^{k}} \\
& \asymp \frac{h_{t}^{R^{d}}(X, Y)}{}
\end{aligned}
$$

ESTIMATES OF s-STABLE DUNKL HEAT SEMIGROUPS

Theorem (PG, PS 2022)
Consider the W-invariant Dunkl Laplacian in the A_{n} case with multiplicity $k>0$. Then for $X, Y \in \overline{\mathfrak{a}^{+}}$,

$$
\begin{aligned}
h_{t}^{W}(X, Y) & \asymp \frac{h^{R^{d}}(X, Y)}{\prod_{\alpha>0}\left(t^{2 / s}+\left|X-\sigma_{\alpha} Y\right|^{2}\right)^{k}} \\
& \asymp \frac{h_{t}^{R^{d}}(X, Y)}{\prod_{\alpha>0}\left(t^{2 / s}+|X-Y|^{2}+\alpha(X) \alpha(Y)\right)^{k}} .
\end{aligned}
$$

ESTIMATES OF s-STABLE DUNKL HEAT SEMIGROUPS

Theorem (PG, PS 2022)
Consider the W-invariant Dunkl Laplacian in the A_{n} case with multiplicity $k>0$. Then for $X, Y \in \overline{\mathfrak{a}^{+}}$,

$$
\begin{aligned}
h_{t}^{W}(X, Y) & \asymp \frac{h^{R^{d}}(X, Y)}{\prod_{\alpha>0}\left(t^{2 / s}+\left|X-\sigma_{\alpha} Y\right|^{2}\right)^{k}} \\
& \asymp \frac{h_{t}^{R^{d}}(X, Y)}{\prod_{\alpha>0}\left(t^{2 / s}+|X-Y|^{2}+\alpha(X) \alpha(Y)\right)^{k}} .
\end{aligned}
$$

$h_{t}^{\mathrm{R}^{d}}(X, Y) \asymp \min \left\{\frac{1}{t^{d / s}}, \frac{t}{|X-Y|^{d+s}}\right\} \asymp \frac{t}{\left(t^{2 / s}+|X-Y|^{2}\right)^{(d+s) / 2}}$.
is the s-stable rotationally invariant semigroup on \mathbf{R}^{d}, with generator $(-\Delta)^{5 / 2}$ (Blumenthal-Getoor)

PROOF

PROOF

We have

$$
h_{t}^{W}(X, Y)=\int_{0}^{\infty} p_{u}^{W}(X, Y) \eta_{t}(u) d u
$$

where $\eta_{t}(u)$ is the density of the $s / 2$-stable subordinator, i.e. of a positive Lévy process $\left(Y_{t}\right)_{t>0}$ with the Laplace transform

$$
\mathbf{E}\left(\exp \left(z Y_{t}\right)\right)=\exp \left(-t z^{s / 2}\right), z>0
$$

PROOF

We have

$$
h_{t}^{W}(X, Y)=\int_{0}^{\infty} p_{u}^{W}(X, Y) \eta_{t}(u) d u
$$

where $\eta_{t}(u)$ is the density of the $s / 2$-stable subordinator, i.e. of a positive Lévy process $\left(Y_{t}\right)_{t>0}$ with the Laplace transform

$$
\mathbf{E}\left(\exp \left(z Y_{t}\right)\right)=\exp \left(-t z^{s / 2}\right), z>0
$$

$\eta_{t}(u)$ is not given explicitely; its fine estimates are used (Bogdan, Stós, Sztonyk (2003) Studia Math.)

PROOF

We have

$$
h_{t}^{W}(X, Y)=\int_{0}^{\infty} p_{u}^{W}(X, Y) \eta_{t}(u) d u
$$

where $\eta_{t}(u)$ is the density of the $s / 2$-stable subordinator, i.e. of a positive Lévy process $\left(Y_{t}\right)_{t>0}$ with the Laplace transform

$$
\mathbf{E}\left(\exp \left(z Y_{t}\right)\right)=\exp \left(-t z^{s / 2}\right), z>0
$$

$\eta_{t}(u)$ is not given explicitely; its fine estimates are used (Bogdan, Stós, Sztonyk (2003) Studia Math.)
Upper estimates may be deduced from our estimates of the W-invariant Dunkl heat kernel and from recent results on estimates for subordinanted processes [Grzywny, Trojan (2021)]

OPDAM-CHEREDNIK DERIVATIVES AND
 LAPLACIAN

OPDAM-CHEREDNIK DERIVATIVES AND LAPLACIAN

Let ∂_{ξ} be the derivative in the direction of $\xi \in \mathbf{R}^{d}$. The Opdam-Cherednik operators indexed by ξ are then given by

OPDAM-CHEREDNIK DERIVATIVES AND LAPLACIAN

Let ∂_{ξ} be the derivative in the direction of $\xi \in \mathbf{R}^{d}$. The Opdam-Cherednik operators indexed by ξ are then given by

$$
D_{\xi} f(X)=\partial_{\xi} f(X)+\sum_{\alpha \in \Sigma^{+}} k_{\alpha} \alpha(\xi) \frac{f(X)-f\left(\sigma_{\alpha} X\right)}{1-e^{-\alpha(X)}}-\rho(k)(\xi) f(X)
$$

where $\rho(k)=\sum_{\alpha \in \Sigma_{+}} k(\alpha) \alpha$.

OPDAM-CHEREDNIK DERIVATIVES AND LAPLACIAN

Let ∂_{ξ} be the derivative in the direction of $\xi \in \mathbf{R}^{d}$. The Opdam-Cherednik operators indexed by ξ are then given by $D_{\xi} f(X)=\partial_{\xi} f(X)+\sum_{\alpha \in \Sigma^{+}} k_{\alpha} \alpha(\xi) \frac{f(X)-f\left(\sigma_{\alpha} X\right)}{1-e^{-\alpha(X)}}-\rho(k)(\xi) f(X)$, where $\rho(k)=\sum_{\alpha \in \Sigma_{+}} k(\alpha) \alpha$.

Very important:The D_{ξ} 's, $\xi \in \mathbf{R}^{d}$, form a commutative family.

OPDAM-CHEREDNIK DERIVATIVES AND LAPLACIAN

Let ∂_{ξ} be the derivative in the direction of $\xi \in \mathbf{R}^{d}$. The Opdam-Cherednik operators indexed by ξ are then given by $D_{\xi} f(X)=\partial_{\xi} f(X)+\sum_{\alpha \in \Sigma^{+}} k_{\alpha} \alpha(\xi) \frac{f(X)-f\left(\sigma_{\alpha} X\right)}{1-e^{-\alpha(X)}}-\rho(k)(\xi) f(X)$, where $\rho(k)=\sum_{\alpha \in \Sigma_{+}} k(\alpha) \alpha$.

Very important:The D_{ξ} 's, $\xi \in \mathbf{R}^{d}$, form a commutative family.
Trigonometric Dunkl Laplacian: $\mathcal{L}=\sum_{i=1}^{d} D_{\mathbf{e}_{i}}^{2}$.

OPDAM-CHEREDNIK DERIVATIVES AND LAPLACIAN

Let ∂_{ξ} be the derivative in the direction of $\xi \in \mathbf{R}^{d}$. The Opdam-Cherednik operators indexed by ξ are then given by $D_{\xi} f(X)=\partial_{\xi} f(X)+\sum_{\alpha \in \Sigma^{+}} k_{\alpha} \alpha(\xi) \frac{f(X)-f\left(\sigma_{\alpha} X\right)}{1-e^{-\alpha(X)}}-\rho(k)(\xi) f(X)$, where $\rho(k)=\sum_{\alpha \in \Sigma_{+}} k(\alpha) \alpha$.

Very important:The D_{ξ} 's, $\xi \in \mathbf{R}^{d}$, form a commutative family.
Trigonometric Dunkl Laplacian: $\mathcal{L}=\sum_{i=1}^{d} D_{\mathbf{e}_{i}}^{2}$.
For fixed $Y \in \mathbf{R}^{d}$, the Opdam-Cherednik kernel $G_{k}(\cdot, \cdot)$ is then the only real-analytic solution to the system

$$
\left.D_{\xi}(k)\right|_{X} G_{k}(X, Y)=\langle\xi, Y\rangle G_{k}(X, Y), \forall \xi, X \in \mathbf{R}^{d}
$$

with $G_{k}(0, Y)=1$.

OPDAM-CHEREDNIK DERIVATIVES AND LAPLACIAN

Let ∂_{ξ} be the derivative in the direction of $\xi \in \mathbf{R}^{d}$. The Opdam-Cherednik operators indexed by ξ are then given by $D_{\xi} f(X)=\partial_{\xi} f(X)+\sum_{\alpha \in \Sigma^{+}} k_{\alpha} \alpha(\xi) \frac{f(X)-f\left(\sigma_{\alpha} X\right)}{1-e^{-\alpha(X)}}-\rho(k)(\xi) f(X)$, where $\rho(k)=\sum_{\alpha \in \Sigma_{+}} k(\alpha) \alpha$.

Very important:The D_{ξ} 's, $\xi \in \mathbf{R}^{d}$, form a commutative family.
Trigonometric Dunkl Laplacian: $\mathcal{L}=\sum_{i=1}^{d} D_{\mathbf{e}_{i}}^{2}$.
For fixed $Y \in \mathbf{R}^{d}$, the Opdam-Cherednik kernel $G_{k}(\cdot, \cdot)$ is then the only real-analytic solution to the system

$$
\left.D_{\xi}(k)\right|_{X} G_{k}(X, Y)=\langle\xi, Y\rangle G_{k}(X, Y), \forall \xi, X \in \mathbf{R}^{d}
$$

with $G_{k}(0, Y)=1$. We study $\phi_{\lambda}\left(e^{X}\right)=\frac{1}{|W|} \sum_{w \in w} G_{k}(w \cdot X, \lambda)$.
Opdam-Cherednik stochastic process has \mathcal{L} as generator.

CURVED RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN W-INVARIANT
 OPDAM-CHEREDNIK ANALYSIS: $k=1 / 2,1,2$

CURVED RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN W-INVARIANT OPDAM-CHEREDNIK ANALYSIS: $k=1 / 2,1,2$

When $k=1 / 2,1,2$, the W-invariant Opdam-Cherednik analysis is equivalent to the W-invariant analysis on curved Riemannian symmetric spaces:

CURVED RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN W-INVARIANT OPDAM-CHEREDNIK ANALYSIS: $k=1 / 2,1,2$

When $k=1 / 2,1,2$, the W-invariant Opdam-Cherednik analysis is equivalent to the W-invariant analysis on curved Riemannian symmetric spaces:
$k=1 / 2$: real case

CURVED RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN W-INVARIANT OPDAM-CHEREDNIK ANALYSIS: $k=1 / 2,1,2$

When $k=1 / 2,1,2$, the W-invariant Opdam-Cherednik analysis is equivalent to the W-invariant analysis on curved Riemannian symmetric spaces:
$k=1 / 2$: real case
$k=1$: complex case

CURVED RIEMANNIAN SYMMETRIC SPACES ARE "INCLUDED" IN W-INVARIANT OPDAM-CHEREDNIK ANALYSIS: $k=1 / 2,1,2$

When $k=1 / 2,1,2$, the W-invariant Opdam-Cherednik analysis is equivalent to the W-invariant analysis on curved Riemannian symmetric spaces:
$k=1 / 2$: real case
$k=1$: complex case
$k=2$: quaternionic

CHALLENGE: HEAT KERNEL ESTIMATES IN THE CURVED SYMMETRIC / DUNKL TRIGONOMETRIC CASE

CHALLENGE: HEAT KERNEL ESTIMATES IN THE CURVED SYMMETRIC / DUNKL TRIGONOMETRIC CASE

We obtained the following estimates of the Laplace-Beltrami heat kernel $P_{t}(X, Y)$ on curved complex symmetric spaces of type A :

CHALLENGE: HEAT KERNEL ESTIMATES IN THE CURVED SYMMETRIC / DUNKL TRIGONOMETRIC CASE

We obtained the following estimates of the Laplace-Beltrami heat kernel $P_{t}(X, Y)$ on curved complex symmetric spaces of type A :

Theorem (PG,PS 2021)
In the curved symmetric complex case $k=1$ for the root systems A_{d} in \mathbf{R}^{d}, denoting $\rho=\sum_{\alpha>0} \alpha$,

CHALLENGE: HEAT KERNEL ESTIMATES IN THE CURVED SYMMETRIC / DUNKL TRIGONOMETRIC CASE

We obtained the following estimates of the Laplace-Beltrami heat kernel $P_{t}(X, Y)$ on curved complex symmetric spaces of type A :

Theorem (PG,PS 2021)
In the curved symmetric complex case $k=1$ for the root systems A_{d} in \mathbf{R}^{d}, denoting $\rho=\sum_{\alpha>0} \alpha$,
$P_{t}^{W}(X, Y)$
$\asymp t^{-\frac{d}{2}} e^{\frac{-|X-Y|^{2}}{2 t}} e^{-|\rho|^{2} t / 2} e^{-\rho(X+Y)} \prod_{\alpha>0} \frac{(1+\alpha(X))(1+\alpha(Y))}{t+\alpha(X) \alpha(Y)}$.

PROOF

PROOF

We use the relationship between the heat kernel $p_{t}^{W}(X, Y)$ in the flat case and the heat kernel $P_{t}^{W}(X, Y)$ in the curved case (valid only in the complex case $k=1$):

PROOF

We use the relationship between the heat kernel $p_{t}^{W}(X, Y)$ in the flat case and the heat kernel $P_{t}^{W}(X, Y)$ in the curved case (valid only in the complex case $k=1$):

$$
P_{t}^{W}(X, Y)=e^{-|\rho|^{2} t / 2} \frac{\pi(X) \pi(Y)}{\delta^{1 / 2}(X) \delta^{1 / 2}(Y)} p_{t}^{W}(X, Y)
$$

PROOF

We use the relationship between the heat kernel $p_{t}^{W}(X, Y)$ in the flat case and the heat kernel $P_{t}^{W}(X, Y)$ in the curved case (valid only in the complex case $k=1$):

$$
P_{t}^{W}(X, Y)=e^{-|\rho|^{2} t / 2} \frac{\pi(X) \pi(Y)}{\delta^{1 / 2}(X) \delta^{1 / 2}(Y)} p_{t}^{W}(X, Y)
$$

where $\quad \pi(Y)=\prod_{\alpha>0} \alpha(Y), \quad \delta(X)=\prod_{\alpha>0} \sinh ^{2} \alpha(X)$.

PROOF

We use the relationship between the heat kernel $p_{t}^{W}(X, Y)$ in the flat case and the heat kernel $P_{t}^{W}(X, Y)$ in the curved case (valid only in the complex case $k=1$):

$$
P_{t}^{W}(X, Y)=e^{-|\rho|^{2} t / 2} \frac{\pi(X) \pi(Y)}{\delta^{1 / 2}(X) \delta^{1 / 2}(Y)} p_{t}^{W}(X, Y)
$$

where $\quad \pi(Y)=\prod_{\alpha>0} \alpha(Y), \quad \delta(X)=\prod_{\alpha>0} \sinh ^{2} \alpha(X)$.
The formula follows from the fact that the respective radial Laplacians and radial measures are:

PROOF

We use the relationship between the heat kernel $p_{t}^{W}(X, Y)$ in the flat case and the heat kernel $P_{t}^{W}(X, Y)$ in the curved case (valid only in the complex case $k=1$):

$$
P_{t}^{W}(X, Y)=e^{-|\rho|^{2} t / 2} \frac{\pi(X) \pi(Y)}{\delta^{1 / 2}(X) \delta^{1 / 2}(Y)} p_{t}^{W}(X, Y)
$$

where $\quad \pi(Y)=\prod_{\alpha>0} \alpha(Y), \quad \delta(X)=\prod_{\alpha>0} \sinh ^{2} \alpha(X)$.
The formula follows from the fact that the respective radial Laplacians and radial measures are:
$\pi^{-1} L_{\mathfrak{a}} \circ \pi$ and $\pi(X) d X$ in the flat case
($L_{\mathfrak{a}}$ stands for the Euclidean Laplacian on \mathfrak{a})

PROOF

We use the relationship between the heat kernel $p_{t}^{W}(X, Y)$ in the flat case and the heat kernel $P_{t}^{W}(X, Y)$ in the curved case (valid only in the complex case $k=1$):

$$
P_{t}^{W}(X, Y)=e^{-|\rho|^{2} t / 2} \frac{\pi(X) \pi(Y)}{\delta^{1 / 2}(X) \delta^{1 / 2}(Y)} p_{t}^{W}(X, Y)
$$

where $\quad \pi(Y)=\prod_{\alpha>0} \alpha(Y), \quad \delta(X)=\prod_{\alpha>0} \sinh ^{2} \alpha(X)$.
The formula follows from the fact that the respective radial Laplacians and radial measures are:
$\pi^{-1} L_{\mathfrak{a}} \circ \pi$ and $\pi(X) d X$ in the flat case
($L_{\mathfrak{a}}$ stands for the Euclidean Laplacian on \mathfrak{a})
$\delta^{-1 / 2}\left(L_{\mathfrak{a}}-|\rho|^{2}\right) \circ \delta^{1 / 2}$ and $\delta(X) d X$ in the curved case.

SPECIAL CASE: A RANK 1 RESULT

SPECIAL CASE: A RANK 1 RESULT

Corollary
Consider the complex hyperbolic space, isomorphic to the 3 -dimensional real hyperbolic space $\mathrm{H}^{3}(\mathbf{R})$.

$$
\begin{gathered}
P_{t}(X, Y) \asymp t^{-\frac{1}{2}} e^{\frac{-|X-Y|^{2}}{2 t}} e^{-t / 2} e^{-(X+Y) / 2} \frac{(1+X)(1+Y)}{t+X Y}, \\
X, Y, t \geq 0
\end{gathered}
$$

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

We conjecture that in the W-invariant Opdam-Cherednik trigonometric case we have the following sharp estimate:

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

We conjecture that in the W-invariant Opdam-Cherednik trigonometric case we have the following sharp estimate:

Conjecture

$$
\begin{aligned}
p_{t}^{W}(X, Y) & \asymp t^{-\frac{d}{2}} e^{\frac{-|X-Y|^{2}}{2 t}} e^{-|\rho|^{2} t / 2} e^{-\rho(X+Y)} \\
& \prod_{\alpha \in \Sigma^{++}}(1+\alpha(X))(1+\alpha(Y)) \\
& \frac{(t+1+\alpha(X+Y))^{k(\alpha)+k(2 \alpha)-1}}{(t+\alpha(X) \alpha(Y))^{k(\alpha)+k(2 \alpha)}}
\end{aligned}
$$

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

This Conjecture is compatible with the result of Anker and Ostellari (2003) for $P_{t}(X, 0)$ on the hyperbolic spaces and by Schapira (2015) in Opdam-Cherednik setting including the curved symmetric spaces $M(n=\operatorname{dim}(M))$:

$$
\begin{aligned}
P_{t}(X, 0) \asymp & t^{-\frac{n}{2}} e^{\frac{-|X|^{2}}{2 t}} e^{-|\rho|^{2} t / 2} e^{-\rho(X)} \\
& \prod_{\alpha \in \Sigma^{++}}(1+\alpha(X))(t+1+\alpha(X))^{k(\alpha)+k(2 \alpha)-1}
\end{aligned}
$$

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

This Conjecture is compatible with the result of Anker and Ostellari (2003) for $P_{t}(X, 0)$ on the hyperbolic spaces and by Schapira (2015) in Opdam-Cherednik setting including the curved symmetric spaces $M(n=\operatorname{dim}(M))$:

$$
\begin{aligned}
P_{t}(X, 0) \asymp & t^{-\frac{n}{2}} e^{\frac{-|X|^{2}}{2 t}} e^{-|\rho|^{2} t / 2} e^{-\rho(X)} \\
& \prod_{-\Gamma}(1+\alpha(X))(t+1+\alpha(X))^{k(\alpha)+k(2 \alpha)-1}
\end{aligned}
$$

PG and PS proved (2023) the conjecture for A_{1} using a technique developed by Anker and Ostellari (2003) and also used by Schapira (2018).

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

The conjecture in A_{1} :

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

The conjecture in A_{1} :

$$
\begin{aligned}
& p_{t}^{W}(x, y) \asymp t^{-\frac{1}{2}} e^{\frac{-|x-y|^{2}}{2 t}} \\
& \quad e^{-k^{2} t / 2} e^{-k(x+y)}(1+x)(1+y) \frac{(t+1+x+y)^{k-1}}{(t+x y)^{k}} \\
& x \geq 0, y \geq 0, t>0
\end{aligned}
$$

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

The conjecture in A_{1} :

$$
\begin{aligned}
p_{t}^{W}(x, y) & \asymp t^{-\frac{1}{2}} e^{\frac{-|x-y|^{2}}{2 t}} \\
& e^{-k^{2} t / 2} e^{-k(x+y)}(1+x)(1+y) \frac{(t+1+x+y)^{k-1}}{(t+x y)^{k}}
\end{aligned}
$$

$x \geq 0, y \geq 0, t>0$.
Reference: P. Graczyk and P. Sawyer. Sharp estimates for the Opdam-Cherednik W-invariant heat kernel for the root system A_{1} (2022), arXiv:2304.07009, 1-17.

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

Basic idea: use the Weak parabolic minimum principle for unbounded domains and a subdivision of the domain in regions:

CONJECTURE FOR SHARP ESTIMATES OF $p_{t}^{w}(x, y)$ IN THE W-INVARIANT OPDAM-CHEREDNIK TRIGONOMETRIC CASE

Basic idea: use the Weak parabolic minimum principle for unbounded domains and a subdivision of the domain in regions:

THE END!

THANK YOU FOR YOUR ATTENTION

