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Dunkl operators were discovered by Dunkl in late 1980’s as a
crucial tool to study Calogero-Moses-Sutherland mechanical
particle systems.

In physics/mechanics, we expect some symmetries.

The main idea of the Dunkl theory is to do analysis on RY related
to a finite root system ¥ C R?\ {0} and to the related symmetries.

Roots « are some ‘“very symmetrically chosen” non-zero vectors of
Re.
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BASIC FACTS ON ROOT SYSTEMS AND DUNKL
OPERATORS

A finite subset ¥ C R?\ {0} is a root system in R? if

1.
2.

The roots span RY.

The only scalar multiple of o € X is —« (the root system is
reduced).

a, B € X implies 0,0 = B—Q B |2>aEZ.

a, B € X implies 2 <| |2> is an integer (the root system is
crystallographic).

The hyperplane

={xe Rd| a(x) = (a,x) =0}

orthogonal to a.
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Y=A_1={f(ej—e):1<i<j<r}CR?Y d>r.

where ey, ..., ey are the canonical vectors.

A, is also considered in R™T1 N {3 x; = 0} and then we say “A, in
R™ .

The simplest example is A; in RL. It boils down to R with
A1 = {a, —a} where a(x, —x) = x — (—x) = 2x.

The hyperplane H, = {0} and 0,(X) = —X.  We have
Ja(Al) = Al.

For A,_1 in RY, the symmetries Oe;—e;: i#j, i, j<r+1, are the
transpositions of the elements x; and x; of the vector x.
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POSITIVE WEYL CHAMBER C*

Each root system X can be decomposed as a disjoint union
y=ytu(-x")

where ¥ and —X T are separated by a hyperplane. The roots in
YT are called positive roots.

The positive Weyl chamber is defined by

Ct={xeR¥:VacXI™ a(x)>0}.

The set of reflecting hyperplanes H,, divides R? into connected
open components called Weyl chambers (C™T is one of them).
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The finite group W generated by the symmetries o, € ¥ is
called the Weyl group associated with .

>=A_1inR":

W = S,, the permutation group in r elements (recall: Oe;—e; are
the transpositions of the elements x; and x; of the vector x)

Y=A,_1inRY d>r

W = S, is the permutation group of the r first elements of x € R?
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A Dunkl derivative on R? is a differential-difference operator: for
£eRY,

Tef(x) £ Y k(o) (g T Floex) e ey

aext <a7 X>

where the function kK > 0 on X is a fixed W-invariant
“multiplicity” function (for ¥ = A,: the function k is constant).

Very important (Dunkl 1995): the Dunkl derivatives commute.
For fixed Y € RY, the Dunkl kernel E(-,-) is the only real-analytic
solution to the system

Te(K)ly Ec(X,Y) = (£ Y) E(X,Y), V6, X € RY

with E,(0, Y) = 1. We study v, (e Wi z Ex(w- X, \).

wew
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Dunkl Laplacian: Ay := 37 | T2

AZV = Ay when restricted to W-invariant functions

AVF(x) =AF(x)+2 ) ke

aext

Oaf(x)
(o, )
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CASE A; IN R!

The Dunkl derivative

The Dunkl Laplacian
2k f(x)—f(—
Af(x) = T2F(x) = F(x) + () — V=)
X X
The W-invariant Dunkl Laplacian when restricted to even
(W-invariant functions)

AV F(x) = f"(x) + zx—kf’(x)

AZV is the generator of a Bessel process on RT = C+.
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Rosler, Voit (1998): The Dunkl process is the cadlag Markov
process (X;) on R? with infinitesimal generator 1Ay.

Basic properties:
» (X:) is a martingale,
> (X:) is 2-selfsimilar,

» (|| X¢]|) is a Bessel process (this property characterizes Dunkl
processes among martingales (Gallardo, Yor),

> X; jumps from x to wx, w € W.
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Multidimensional Bessel processes

Let I be the canonical W-projection on the positive Weyl chamber
C* (i.e. M(x) is the unique point of the orbit Wx which lies in
ct).

The process XV := N(X;) is called the radial (W-invariant) Dunkl

process or multidimensional Bessel process. XtW is a continuous
diffusion with generator

(o, Vu(x))

(@, %)

LV u(x) = %Au(x) + Z k()

aeYt

Theory of Dunkl processes: Gallardo-Yor, Schapira, Demni,
Chibiryakov, Voit, Gallardo-Rejeb,...



(d = RANK(Z) + 1) RADIAL DUNKL PROCESS
FOR k(o) =1 IS THE BROWNIAN MOTION
CONDITIONED TO STAY IN C*



(d = RANK(Z) + 1) RADIAL DUNKL PROCESS
FOR k(o) =1 IS THE BROWNIAN MOTION
CONDITIONED TO STAY IN C*

For example, if ¥ = A,_; then w(x) =[]
Vandermonde determinant.

,->J-(x,- — Xj), the



(d = RANK(Z) + 1) RADIAL DUNKL PROCESS
FOR k(o) =1 IS THE BROWNIAN MOTION
CONDITIONED TO STAY IN C*

For example, if & = A,_; then m(x) = [[;5;(xi — x;), the
Vandermonde determinant.
The generator of XV is then

1 1 g
Au=LM u= EAU + (v, Vu) =7 1 ZAR (nu).
T




(d = RANK(Z) + 1) RADIAL DUNKL PROCESS
FOR k(o) =1 IS THE BROWNIAN MOTION
CONDITIONED TO STAY IN C*

For example, if & = A,_; then m(x) = [[;5;(xi — x;), the
Vandermonde determinant.

The generator of XV is then

1 1
Ay = E,‘f‘élu = EAu—l_ (v, Vu) =71 AR (7 u).
T

When a probabilist looks at the last formula, they see in it the
generator of the Doob h-transform with the excessive (here
harmonic) function h = 7(x).



(d = RANK(Z) + 1) RADIAL DUNKL PROCESS
FOR k(o) =1 IS THE BROWNIAN MOTION
CONDITIONED TO STAY IN C*

For example, if & = A,_; then m(x) = [[;5;(xi — x;), the
Vandermonde determinant.

The generator of XV is then

1 Vv,V 1 g
Au=LM u= EAu—l_ N, V) =71 AR (7 u).
T
When a probabilist looks at the last formula, they see in it the
generator of the Doob h-transform with the excessive (here
harmonic) function h = 7(x).

For the root system A,_; on R”, the operator AW is the generator
of the Dyson Brownian Motion on R’, i.e. defined as the r
Brownian independent particles Bgl), U Bgr) conditioned not to
collide.
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The Dyson Brownian Motion D} on the positive Weyl chamber
CT is defined as the h-Doob transform of the Brownian Motion on
RY, with h = =, i.e. its transition density is equal to

m(Y)

D killed
X, Y)= —+= X, Y
pt( ) ) 7_‘_()<)pl' ( 9 )7

where pkilled(X | Y) is the transition density of the Brownian
Motion killed at the first strictly positive time of touching OC™.

We have .
p%»;:llled()(7 Y) = det(gt(Xia)’j))

where g; the classical 1-dimensional heat kernel (Karlin,
MacGregor).
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The only difference with the invariant Dunkl case kK = 1 is that the
invariant measure 72(Y) dY is used in Dunkl analysis, but it does
not appear for the integral kernels in the Dyson Brownian Motion

case.

The Brownian motion in the Weyl chamber C+ was studied by Grabiner
(IHP 1999), Biane, Bougerol, O'Connell (Duke 2005) and many others.
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PROBABILISTIC POINT OF VIEW: DYSON
BROWNIAN MOTION (k(a) = 1)

For the root system A,_1 on R”, the operator AXV is the generator
of the k-Dyson Brownian Motion D; on R".

For k =1, the 1-Dyson Brownian Motion coincides with the

classical Dyson BM, defined as the r Brownian independent

particles BEl), R Bﬁ” conditioned not to collide.

The Brownian motion lives in the whole vector space R".
The Dyson Brownian motion lives in the Weyl chamber C+.
The heat kernel p/V(X,-) is the density of D; started at X.

The kernels are considered with respect to the Dunkl weight
function wi(Y) = [[pes+ [{c, Y)[2k(@) on RY.
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M. DE JEU (2006): FLAT RIEMANNIAN
SYMMETRIC SPACES ARE “INCLUDED” IN THE
W-INVARIANT DUNKL ANALYSIS: k=1/2,1, 2

When k =1/2, 1, 2, the W-invariant Dunkl analysis is equivalent
to the W-invariant analysis on flat Riemannian symmetric spaces:

k =1/2: real case
k = 1: complex case

k = 2: quaternionic case
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POISSON AND NEWTON KERNELS

» Poisson kernel: Harmonic measure on 9B(0, 1),

deniy of x

P(x, dy) = Ta0)’

x € B(0,1).
» Newton kernel:

N(x,y) = /000 pt(x,y) dt.
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» f(x) =< g(x) means that there exists C > 0 such that
C1f(x) < f(x) < Cg(x) forall x € D.

g(x) means that there exists C > 0 such that
C g(x) for all x € D.

g(x) means that there exists C > 0 such that
C g(x) for all x € D.
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The estimates obtained in the complex and rank 1 cases have an
elegant form

KRY(X,Y)
H(y>0 ‘X _ O-aY’2k(a)a

KY(X,Y) =

where KR is a classical kernel and K% (x,y) its radial Dunkl
counterpart. Equivalently
KRY(X,Y)

KX = XV + aKa

Conjecture

The above estimates are always true, with the corrections:
«a € T = set of undivisible positive roots, the power
k(o) + k(2a) in the place of k(c).
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It is of note that in the Dunkl setting, knowledge of the Dunkl
kernel Ex(X,Y) is equivalent to knowledge of the heat kernel:

If v =23 4-0k(a) then

w2 y2 Y

In the Weyl-invariant setting:

2 y2 1\
PV (X,Y)=Cet T e gy ()
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> Given a root system ¥ on RY, let =+ be the set of indivisible
positive roots. For A\, X € aT, we have

1
(X)) = AX)
1,/\(6’ ) = e H (1 + ('}(X) ('1,(/\))k((")+k(2“)

wWix,v)= e w0 ] 1
AR (t + a(X) a(Y))k(@)+k(2a) |
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CONJECTURE ON THE ESTIMATES OF THE
WEYL INVARIANT DUNKL HEAT KERNEL
py(x,y) FOR ANY ROOT SYSTEM

For any t > 0, X, Y €at
t-9/2 g~ IX=YP/(20)
H(kEZ‘FA (t + O{(X) ()é( Y))k(()/)+k(2n:) .

pt/ (X, Y) =

Compare with the estimates of J.P. Anker, J. Dziubanski, A. Hejna
(2019-2022) for p¢(X, Y), in the general case.

QUESTION: Could the Conjecture be true in general for
pt/ (X, Y)?
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In the case of the root system of type A,, the conjecture becomes:

X)) = AX) 1
¥a(e™) ,13 (T4+ (N —\) (x5 — x;)k

where X = diag[xy, ... xa11], M(X) = Zjnill Aj Xj, Xj > Xj+1 and
Aj 2 Ajy1 whenever | < .

For the heat kernel, this becomes

(X Y) =t e F ] !
A i (84 (= x) (vi = )"

when x; > x;j11 and y; > yj41 for i <.




THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS

Idea behind the proof: to prove the conjecture in this case, one
uses the recurrence formula:



THE CONJECTURE IN THE DUNKL SETTING

FOR TYPE A ROOT SYSTEMS
Idea behind the proof: to prove the conjecture in this case, one
uses the recurrence formula:

a(eX) = XV if n=1 and
Ik 1 nt1 Xn X1
in() = THU D o Stz [7 o [ o)

[H (]i[(xj'yi) f[l (nyj))] 7

i=1 \j=1 j=i+1
IT Gi—y)dya---dya
i<j<n
where A\g(U) = >°7_; (Ar — Any1) uk and
m(X) = Hi<j§n+1 (xi — ).
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We start with the rank one case: this is essentially

X1
/ e M=) () (g — )T (11— x2) T dy

2

X1
= / e—(A1—>\2)(X1—y1) (Xl _ yl)k—l (}/1 _ Xz)k_l dy
(a+x2)/2
X1
= (x1 — Xg)kf1 / e~ (M=) a—x1) (1 — yl)kfl dy1
(x1t+x2)/2

. . (A1=2X2) (x1—x2)/2 .
= (a —x) (A=)~ / e Y uk 1l du
0

) . (1 — x2)/2 '
= (31— %) <1 + (A1 = A2) (1 — X2)/2> '

The rank 1 case is very representative of the general case.
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Next step: replacing 1,(e¥) by its sharp estimate (proof by
induction) and multiplying the whole thing by e=*(X) (X)2k-1,
the conjecture is equivalent to

[ _ / / (Ni—Ant1) (xi—7)
Xn+1 X2

k—1
(H xi-y) ]I (yij))

i<j<n i<j<n+1

Yi—Yj
T (7 A

e 7r(X)2 k—1
Hi<j§n+1 (T + (A = X)) 6 — X))

..to be proven!

~
—~
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The W-invariant Dunkl Newton kernel N (X, Y) is the kernel of
the inverse operator of the Dunkl Laplacian AW,

It is the fundamental solution of the Cauchy problem
AW y=f

where f is given and |u(x)| — 0 as x — 0.
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Corollary

Consider a root system of type A. For X, Y € a*t and for fixed
d >3 and k > 0, we have

1
X = V[T 2 [Lyexs X — 00 YE*
1

NY(X,Y) =

—~

(X = Y72 [ aex+ (IX = Y2+ a(X)a(Y)K

We prove a similar result in the case d = 2.
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We use the formula
WY = [ Y
0

where pV (X, Y) is the heat kernel of A". With the help of

Lemma
Suppose k >0,a>0,b;>0,a+b;>0,i=1,..., mand
N> km—1. Then

y _/ U du 1
H, 1 ( a+b oF I, (a+ bi)F
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Let s € (0,2). The fractional powers of the W-invariant Dunkl

Laplacian
(—apy?

are the infinitesimal generators of semigroups (hYY (X, Y))s>o,
called W-invariant Dunkl s-stable semigroups.
Stable semigroups were studied:

» on Riemannian symmetric spaces of noncompact type
by Getoor (1961), Graczyk and Stés (2004),

» in the Dunkl context
by Jedidi (2021), Rejeb (2021), Luks (2022).
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Theorem (PG, PS 2022)

Consider the W-invariant Dunkl Laplacian in the A, case with
multiplicity k > 0. Then for X, Y € at,

HRY(X,Y)
[Taso(t?/s + X —oa Y[2)*
3 hRY(X,Y)
" Iaso(t25 + X = Y2+ a(X)a(Y)k

AY(X,Y) =

R o 1 t - t
ht (X, Y) = min { td/s’ |X _ Y’d—i—s} - (t2/s + ‘X _ Y|2)(d+5)/2.

is the s-stable rotationally invariant semigroup on R, with
generator (—A)%/2 (Blumenthal-Getoor)
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We have
AYOGY) = [ XY new)
0

where 1¢(u) is the density of the s/2-stable subordinator, i.e. of a
positive Lévy process (Y;)¢>o with the Laplace transform

E (exp(z Y1) = exp(—t z5/?), z > 0;

ne(u) is not given explicitely; its fine estimates are used (Bogdan,
Stés, Sztonyk (2003) Studia Math.)

Upper estimates may be deduced from our estimates of the
W-invariant Dunkl heat kernel and from recent results on
estimates for subordinanted processes [Grzywny, Trojan (2021)]
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OPDAM-CHEREDNIK DERIVATIVES AND
LAPLACIAN

Let O; be the derivative in the direction of £ € R?. The
Opdam-Cherednik operators indexed by £ are then given by

DA(X) =0 F(X) + 3 k(@) EL TR ey ),
aexXt

where p(k) =3 o5, k(a)a.

Very important:The D¢'s, £ € RY, form a commutative family.

Trigonometric Dunkl Laplacian: £ = 27:1 Dgl,.
For fixed Y € RY, the Opdam-Cherednik kernel G(-,-) is then the
only real-analytic solution to the system

DE(k)|X Gk(X7 Y) = <§7 Y> Gk(X7 Y), Vg, X € RY

1
with G,(0, Y) = 1. We study ¢, (eX) = W] D Ge(w- X, ).
wew
Opdam-Cherednik stochastic process has L as generator.
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equivalent to the W-invariant analysis on curved Riemannian
symmetric spaces:

k =1/2: real case

k = 1: complex case

k = 2: quaternionic
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We obtained the following estimates of the Laplace-Beltrami heat
kernel P:(X,Y) on curved complex symmetric spaces of type A:

Theorem (PG,PS 2021)

In the curved symmetric complex case k = 1 for the root systems
Ay in RY, denoting p = Y00
PY(X,Y)

Ld SIXYR s (I+a(X))(1+a(Y))
= 2 lpI°t/2 g=p(X+Y)
e ° c H t+a(X)a(Y)

a>0
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w _ _—lp|?t/2
P (X,Y)=¢e lpl*t/ 51/2(X)51/2(Y)

pt/ (X, Y).
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We use the relationship between the heat kernel p}V (X, Y) in the
flat case and the heat kernel PV (X, Y) in the curved case (valid
only in the complex case k = 1):

m(X)7(Y)
51/2()() 51/2(y)

where (YY) =T[l,o0a(Y), 6(X)=1Tl,-0sinh?a(X).

PV(X,Y) = e loPt/2 P (X, Y).

The formula follows from the fact that the respective radial
Laplacians and radial measures are:

7~ Ly o and 7(X) dX in the flat case
(Ly stands for the Euclidean Laplacian on a)

612 (Ly — |p[?) 0 6/2 and 6(X) dX in the curved case.
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Corollary

Consider the complex hyperbolic space, isomorphic to the
3-dimensional real hyperbolic space H3(R).

L R e —(xy)2 (LX) (A4 Y)

P(X,Y) <t 2 t
(X, Y) e t+ XY
X, Y, t>0
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We conjecture that in the W-invariant Opdam-Cherednik
trigonometric case we have the following sharp estimate:

Conjecture

4 XY oy
pg/V(X Y)Xt 2 e 2t e rd f,/2€ p(X+Y)

IT @+aX)(@+a(y))
aEeY T
(t+1+a(X + Y))k@)t+k2a)-1
(t + a(X) a(Y))kl@)+k(2a)
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This Conjecture is compatible with the result of Anker and
Ostellari (2003) for P:(X,0) on the hyperbolic spaces and by
Schapira (2015) in Opdam-Cherednik setting including the curved
symmetric spaces M (n = dim(M)):

P:(X,0) =< t"2e" =B —[pPt/2 g=p(X)
[T @+ a(X)(t+1+a(x))ke)tkE)-1

aeXtt

PG and PS proved (2023) the conjecture for A; using a technique
developed by Anker and Ostellari (2003) and also used by Schapira
(2018).
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—lx—y|?

p(y) <t ie®

(t+1+x+y)?

e K2 gk (1Y) (1 4 x) (1 + y) (t + x y)k
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x>0,y>0,t>0.
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The conjecture in Az:

—lx—y|?

p(y) <t ie®

k—1
—k2t/2 —k (x+y) (t+1+x+y)
R e (1) 4

x>0,y>0,t>0.

Reference: P. Graczyk and P. Sawyer. Sharp estimates for the
Opdam-Cherednik W-invariant heat kernel for the root system A;
(2022), arXiv:2304.07009, 1-17.
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t} t=2x t=x
[o]
T
[o]




THE END!

THANK YOU FOR YOUR ATTENTION



