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Aim: to investigate the invariant behaviour of the stochastic
differential equations of coagulation-fragmentation

Motivation: Application to avalanches, a real problem
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An avalanche model

An avalanche model as an interacting particle system with values in
{0, 1}Z (cf. [X. Bressaud, N. Fournier, Annals of Probab., 2009]) :

• Let Γ = ((Γt(i))t≥0)i∈Z be an independent family of Poisson
processes with rate 1.

• We assume that on each site i ∈ Z, the flakes are falling following
(Γt(i))t≥0 and the birth flakes follows Poisson processes with rate 1.

- If a flake falls on a vacant site i of Z, i.e. i = 0, this site becomes
occupied, i = 1.

- If a flake falls on an occupied site i ∈ Z, an avalanche starts: the
whole connected component of occupied sites around i becomes vacant.
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The avalanche process ((yt(i))t≥0)i∈Z is defined for t ≥ 0 and i ∈ Z, as:
yt(i) = 1 if the site i is occupied at the moment t, or
yt(i) = 0 if the site i is vacant at time t.

The state space is

E := {y ∈ {0, 1}Z such that lim inf
i→−∞

y(i) = lim inf
i→∞

y(i) = 0}.
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A related binary coagulation-fragmentation model for the
avalanche model

• The fragmentation / coagulation phenomenon for an infinite particles system.

• Each particle is characterised by its size and, at some random time, it
can coagulate or fragment into two particles.

• c(i , t) ≥ 0: the density of i clusters at the time t in the system,
solution of the coagulation-fragmentation equation (C-FE):

∂

∂t
c(i , t) =

1

2

i−1∑
j=1

(K (i − j , j)c(i − j , t)c(j , t)− F (i − j , j)c(i , t))

−
∑
j∈N∗

(K (i , j)c(j , t)c(i , t)− F (i , j)c(i + j , t))

c(i , 0) = c0(i), for (i , t) ∈ N∗ × R+.

K (i , j) : the rate of coagulation of two particles with masses i and j to
form a cluster with mass i + j ,

F (i , j) : the fragmentation rate of a cluster i + j breaks up into two
clusters with masses i and j ,
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Probabilistic model for the avalanche
Properties

• At some random time a particle can splits into two particles or it can
coagulate with another one

• The total mass will be preserved:∑
i≥1 ic(i , t) =

∑
i≥1 ic0(i) for all t ≥ 0, and

∑
i≥1 ic0(i) < ∞.

Therefore

Qt(dx) =
+∞∑
i=1

ic(i , t)δi (dx) is a probability measure on N for each t.

Aim:
1. To construct a jump Markov process (Xt)t⩾0 such that

P(Xt ∈ dx) = Qt(dx).

This process will describe the evolution of the size of a typical particle in
the coagulation-fragmentation system.

2. A numerical approximation for the steady state of the process and a
convergence result
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Hypothesis

• The coagulation kernel K : G × G 7→ R+ is a continuous symmetric
map. There exists a constant C such that for all x , y ∈ G

K (x , y) ≤ C (1 + x + y).

There exists a continuous nonnegative function ϕ : G → [1,∞) such
that x → ϕ(x)/x is nonincreasing on G , and for all x , y ∈ G ,

0 ≤ K (y , x) = K (x , y) ≤ ϕ(x)ϕ(y).

• The fragmentation kernel F : G × G 7→ R+ is a continuous
symmetric map. The function Ψ : G 7→ R+ defined by

Ψ(0) = 0, Ψ(x) =
1

x

∫ x

0

y(x − y)F (y , x − y)dy , for x > 0,

is continuous.

Oana Lupaşcu-Stamate Asymptotic behavior of a one-dimensional avalanche model



A related coagulation-fragmentation equation to the
avalanche

• We consider the coagulation and fragmentation kernels: for all
i , j ∈ N∗ we take K (i , j) = 2 and

F (i , j) =

{
i + j − 1, if i = 1 or j = 1,

0, if i ̸= 1 and j ̸= 1.

The particularity of the fragmentation kernel is that a particle i could be
only split into two particles one of mass 1 and the other one of mass i −1.

The coagulation-fragmentation equation related to the avalanche model is :
∂

∂t
c(i , t) =

1

m0(t)

i−1∑
j=1

c(i − j , t)c(j , t)− (i + 1)c(i , t) + ic(i + 1, t)

c(i , 0) = c0(i), with m0(t) =
∑

i≥1 c(i , t).
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The interpretation of the avalanche in relation with
coagulation-fragmentation model

• We say that two neighbour edges (i − 1, i) and (i , i + 1) belong to
the same particle if yt(i) = 1.

• We assume that each edge has a mass equal to 1.

• A particle of mass i contains i edges and i − 1 occupied sites.

• (i , j) belongs to a particle with mass 1 if and only if y(i) = y(j) = 0.

• For a configuration y ∈ E and for i ∈ N, we assume that there exists
the average number of particles with mass i per unit of length

c(i , yt) := lim
n→∞

number of particles with mass i in [−n, n]

2n + 1
.
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• Based on the invariance by translation of the model, we admit

c(i , t) := c(i , yt) =
1

i
P[ the edge (0, 1) belongs to a particle with mass i in yt ].

• The family (c(·, t))t≥0 = (c(i , t))i≥0,t≥0 would also satisfy∑
i≥0 ic(i , t) = 1 for all t ≥ 0, and

∂

∂t
c(1, t) = −2c(1, t) +

∑
i≥1

ic(i + 1, t),

∂

∂t
c(i , t) = −2c(i , t)− (i − 1)c(i , t)+

1
m0(t)

∑i−1
j=1 c(i − j , t)c(j , t) + ic(i + 1, t) for all i ≥ 2.

(0.1)
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The interpretation of the specific coagulation-
fragmentation eq. in relation with the avalanche

The first equation counts the particles with mass 1 (the isolated edge).

∂

∂t
c(1, t) = −2c(1, t) +

∑
i≥1

ic(i + 1, t)

• a particle with mass 1 disappears when a snowflake falls on an isolated
edge and it coagulates at a constant rate 1 with its two neighbours, K ≡ 2.

• a particle with mass 1 appears if a flake falls on a particle of mass i + 1
and an avalanche starts: it breaks into two particles of masses 1 and i , F (i , 1).
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In the second equation, for all i ≥ 2,

∂

∂t
c(i , t) = −2c(i , t)−(i−1)c(i , t)+

1

m0(t)

i−1∑
j=1

c(i−j , t)c(j , t)+ic(i+1, t)

• the particles of mass i ≥ 2 which disappear after becoming larger
with rate 2, when a flake falls on one of its extremities.

• the particles of mass i which disappear when a flake falls on a
particle with mass i and an avalanche occurs with the rate F (i − j , j)

• the particles of mass i which appear when a flake falls on one
extremity of a particle of mass j , which is the extremity of a particle of
mass i − j and they coagulate with the constant rate 2.

• the particles of mass i which result after the splitting of a larger
particle i + 1 into two smaller particles, according to F (i , 1).
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Study the equilibrium properties of the avalanche process y by using
the steady state of the system (0.1) and an adapted stochastic model

Proposition

The system of equations (0.1) admits a unique steady state denoted by
c = (c(i))i≥1, that is:
(i) c(i) ≥ 0 for each i ≥ 1

(ii)
∑
i≥1

ic(i) = 1

(iii) c = (c(i))i≥1 satisfies

2c(1) =
∑
i≥1

ic(i + 1),

(i + 1)c(i) = ic(i + 1) +
1

Mc

i−1∑
j=1

c(j)c(i − j) for all i ≥ 2,(0.2)

where Mc :=
∑
i≥1

c(i) is supposed uniquely defined and finite.

The steady state is given implicitly by (0.2). We can approximate
numerically Mc ≃ 0, 459134 and then the steady state of the system.
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Definition

A stochastic process (Xt)t≥0 is a solution of the stochastic differential
equation of coagulation-fragmentation (SDECF) if there exists a
filtered probability space (Ω,F , (Ft)t≥0,P) such that

• X0 is a xc0(dx) distributed random variable,

• (Xt)t≥0 is a càdlàg G -valued (Ft)t≥0 adapted process,

• There exist two independent Poisson measures N(ds,dy ,dz) and
M(ds,dy ,dz) adapted to (Ft)t≥0 on [0,+∞)× G × [0,+∞) with
intensity measures dsQs(dy)dz , and dsdydz respectively, where for
s ≥ 0,Qs is the distribution of Xs , such that a.s. for all t ≥ 0

Xt = X0 +

∫ t

0

∫ +∞

0

∫ +∞

0

y1
{z≤ K(Xs−,y)

y }
1{y<∞}N(ds,dy ,dz)

−
∫ t

0

∫ +∞

0

∫ +∞

0

y1{y∈(0,Xs−)}1{z≤ Xs−−y

Xs−
F (y ,Xs−−y)}M(ds,dy ,dz).

The mass of a typical particle in the system is obtained by adding, at some
random Poissonian times, the mass of another typical particle, driven by the K ;
either by splitting, driven by the F , this mass into two smaller masses.
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Numerical approximation for the stochastic differential
equation of the coagulation-fragmentation equation

• Under the Hypothesis on F and K , there exists a unique weak solution to
the (SDECF), cf. [Fournier, Giet, J. Stat. Phys. 2003], in the discrete
case [Jourdain, Markov Processes and Related Fields, 2003].

Aim

• to approximate the steady state of the avalanche by using a
numerical approach for the solution of the stochastic differential equation
of the coagulation-fragmentation equation (SDECF);

• to give a convergence result
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Simulation of the coagulation-fragmentation process as a solution of (SDECF)

Step 0: Sampling X 1
0 , . . . ,X

n
0 i.i.d.r.v., ∼ Q0(dx) = xc0(dx).

Step p.1:Sampling a r. v. y i ∼ U([0,X i
Tp−1

]) for all i ∈ {1, ..., n}.

Compute mi
p,f =

X i
Tp−1

− y i

X i
Tp−1

F (y i ,X i
Tp−1

− y i ) for all i ∈ {1, ..., n}.

Sampling a random variable S i
p,f ∼ E(mi

p,f ) for all i ∈ {1, ..., n}.

Sp,f = min
i
{S i

p,f }, if = i{S i
p,f }.

Step p.2:Compute mp,c = supi,j
K(X i

Tp−1
,X j

Tp−1
)

X j
Tp−1

for all i , j ∈ {1, ..., n}.

Set ic = i , jc = j the couple for which the sup is realised.
Sampling a random variable Sp,c ∼ E(nmp−1,c).

Step p.3: Set Sp = min{Sp,f , Sp,c}.

Step p.3f:If Sp = Sp,f then X if
Tp−1

could fragment.

Sampling a random variable u ∼ U([0, 1]); If u ≤ mif
p,f , then

fragmentation occurs and set
X if

Tp
= X if

Tp−1
− y if ;X k

Tp
= X k

Tp−1
for all k ̸= if .

Else set X k
Tp

= X k
Tp−1

, for all k ∈ {1, . . . , n}.
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Step p.3c:If Sp = Sp,c then a coagulation can occur. At time Sp

the pair (ic , jc) could coagulate and sampling u ∼ U([0,mp,c ]).

If u ≤
K(X ic

Tp−1
,X jc

Tp−1
)

X jc
Tp−1

, then the coagulation occurs and set

X ic
Tp

= X ic
Tp−1

+ X jc
Tp−1

;X k
Tp

= X k
Tp−1

for all k ̸= ic .

Else set X k
Tp

= X k
Tp−1

for all k ∈ {1, ..., n}.

Step p.4: Set Tp = Tp−1 + Sp and for all k ∈ {1, ..., n} and t ∈ [Tp−1,Tp),
X k

t = X k
Tp−1

.

Stop: When Tp > T , set, for all t ∈ [Tp−1,T ], X k
t = X k

Tp−1
for all

k ∈ {1, ..., n}.

Outcome: The approximated particles mass at time T , X k
Tp−1

for all

k ∈ {1, ..., n}.
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Numerical results.
In Table 1 we give the values of ci , i = 1, ... , 5, the concentration of
the particles of mass i in the system N = 15, T = 100 and Monte
Carlo parameter M = 104.

Table: Numerical approximations of concentration of particles ci , i = 1, ..., 5

ci Algorithm A1 Value given by Proposition 0.1

c1 0.2707 0.270433
c2 0.1003 0.081732
c3 0.0209 0.042954
c4 0.0050 0.025178
c5 0.0013 0.015186

c6 ≃ 0.009232, c7 ≃ 0.005625, c8 ≃ 0.003430, c9 ≃ 0.002092, c10 ≃
0.001275, .....
So, we can compute

∑50
i=1 ci = 0.459036, which is a good approximation

of Mc .
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The convergence of the algorithm

Recursive Algorithm for the (SDECF)
Sampling X 1

0 , . . . ,X
n
0 i.i.d.r.v., according to Q0(dx) = xc0(dx).

Set the final time T and the initial t = 0;

Set x= X0 = (X 1
0 , . . . ,X

n
0 );

While (t < T ), do
{
Compute the fragmentation or coagulation time Sp = min{Sp,f , Sp,c} and the
if , ic , jc as in Step p.1 and Step p.2 from the Algorithm A1.
Set Xs =x for all s ∈ [t, (t + Sp) ∧ T ]
Set t = t + Sp

If t ≤ T
{
Choose w uniformly in [0, 1]
Set xm=mass(t,w,x)
Set x(if )=xm(if )-y(if ), for the fragmentation case
or set x(ic)=xm(ic)+xm(jc), for the coagulation case
}

}
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The convergence results

Théorème

Let T < ∞. We assume that K ,F satisfies the conditions from the
Hypothesis and suppose that for all x , x ′, y ∈ N∗ if x ≤ x ′ then
K (x , y) ≤ K (x ′, y). Denote by CT the total number of times that
Recursive Algorithm takes before ending.
Then

E[CT ] < ∞

and the Recursive Algorithm ends a.s. We denote by (Xt)t∈[0,T ] be the
process constructed by the algorithm. Then (Xt)t∈[0,T ] satisfies the
stochastic differential equation of coagulation-fragmentation (SDECF).

[O. L-S, M. Deaconu, Asymptotic behavior of a one-dimensional avalanche

model through a particular stochastic process, preprint, 2023]
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Sketch of the proof

(i) For any r ≥ 0, any v ∈ (0, 1), and any z ∈ N∗, we denote by
Pr ,v ,z(dx ,dc) the law of a couple of random variables (Xr ,v ,z ,Cr ,v ,z):
• Cr ,v ,z the (possibly infinite) number of times that the execution of
the mass(r,v,z)
• Xr ,v ,z is the result of the function mass(r,v,z),i.e. gives the
possibility to have a fragmentation or a coagulation procedure.

(ii) For each r ≥ 0, we denote by
• Cr the (possibly infinite) total number of times that Recursive
Algorithm calls the function mass to obtain Xr .
• Then Cr is a nondecreasing N ∪ {∞}-valued process. and since
Xr ,v ,z is simulated essentially in the same way as Xr , in law, we have

(Xr ,v ,z ,Cr ,v ,z)
(d)
=(Xr (1{v≤[K(z,Xr )/Xr ]/λ(z)}1{Xr<∞}1coag.−

1{Xr∈(0,z)}1{u≤ z−Xr
z F (Xr ,z−Xr )}1frag.,Cr ), (0.3)

For each r ∈ [0,T ] we denote by Qr the law of the N∗ ∪ {∞}-valued r. v. Xr .
(Xr )r∈[0,T ] is now well-defined as a càdlàg, N∗ ∪ {∞}-valued process, and
X0 has the distribution xQ0(dx).

Oana Lupaşcu-Stamate Asymptotic behavior of a one-dimensional avalanche model



Let D be the set N× (N ∪ {∞}). For each r ∈ [0,T ] we have that

• Xr = X0+

∫ r

0

∫ 1

0

∫
D

xMc(ds,dv , d(x , c))−
∫ r

0

∫ 1

0

∫
D

xM f (ds,du, d(x , c)),

(0.4)
where Mc(ds,dv , d(x , c)) and M f (ds,du, d(x , c)) are
random integer-valued measures (see [JacSh87] on [0,T ]×(0, 1)×D, with
compensator λ(Xs−)dsdvPs,v ,Xs−(dx ,dc), respectively dsduPs,u,Xs−(dx ,dc)).

• Cr =

∫ r

0

∫ 1

0

∫
D

(1+c)Mc(ds,dv , d(x , c))+

∫ r

0

∫ 1

0

∫
D

(1+c)M f (ds,dv , d(x , c)).

(0.5)

• (Xr )r∈[0,T ] satisfies (SDECF).
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Let us now prove that E[CT ] < ∞.
• For r ∈ [0,T ] let nr be the distribution of the random variable Cr

which is N ∪ {+∞} valued. By using formula (21) we can express (0.5):

Cr =

∫ r

0

∫
N
(1 + c)ν(ds,dc), (0.6)

where ν is a random integer-valued measure of the form ν = νc + νf ,
and νc and νf denote also random integer-valued measures with
compensators λ(Xr−)drnr (dc) and drnr (dc) respectively.

• Let A ∈ (0,+∞), we have:

Cr ∧ A ≤
∫ r

0

ds((1 + c) ∧ A)ν(ds, dc). (0.7)

By taking expectation and denoting mT = supt∈[0,T ] E(λ(Xt) + Xt) we get

E(Cr ∧ A) ≤ mT +mT

∫ r

0

E(CT ∧ A)ds. (0.8)

• By Gronwall Lemma we deduce that E(CT ∧ A) ≤ γT , where γT is a
constant not depending on A, and we take the limit as A goes to infinity.
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