
Normal approximation of compound Hawkes functionals

Mahmoud Khabou12, Nicolas Privault3 and Anthony Réveillac1
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Definition of the compound Hawkes process

Simple counting processes and their intensities

Definition (Simple counting process)

A stochastic process (Ht)t∈R+
is called a simple counting process if

Ht ≥ 0 for any t ≥ 0,

H is non-decreasing,

H has jumps of size 1.

Giving a simple counting process is equivalent to giving an infinite increasing
sequence of jumping times

0 < τ1 < τ2 < · · ·

Definition (The intensity process)

The intensity/rate process (λt)t∈R+ is the predictable process defined as

λtdt = E[Ht+dt −Ht|Ft− ].
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Definition of the compound Hawkes process

The simple Hawkes process

Definition

Let H be a counting process. We say that H is a simple Hawkes process if its
intensity λ follows the dynamics

λt = µ+

∫ t−

0

ϕ(t− s)dHs = µ+
∑
τk<t

ϕ(t− τk).

Where ϕ is a non-negative integrable kernel such that ∥ϕ∥1 < 1. The constant
µ > 0 is called the baseline intensity.
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Definition of the compound Hawkes process

Definition of the compound Hawkes process

Let (Xk)k∈N be i.i.d of distribution ν. Let H be a Hawkes process and assume
X ⊥⊥ H. The sum

ST =

HT∑
k=1

Xk, T ≥ 0

is called a compound Hawkes process.

Figure: The compound Hawkes process with a kernel ϕ(s) = 4se−4s, µ = 1 and
X ∼ E(1).
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Definition of the compound Hawkes process

The simple Hawkes process defined as Poisson embedding

The Hawkes process as thinning from a Poisson measure

Let N(t, θ) be a two-component Poisson measure of intensity dtdθ. The following
SDE {

Ht =
∫
[0,t]×R+

1θ≤λs
N(ds,dθ),

λt = µ+
∫
[0,t)×R+

ϕ(t− s)1θ≤λs
N(ds,dθ),

has a unique solution such that H is adapted and λ is predictable with respect to
the Poisson filtration.
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Definition of the compound Hawkes process

Generalisation: The compound Hawkes process

The Hawkes process as thinning from a Poisson measure

Let N(t, θ, x) be a three-component Poisson measure of intensity dtdθν(dx). The
following SDE

Ht =
∫
[0,t]×R+×R 1θ≤λsN(ds,dθ,dx),

St =
∫
[0,t]×R+×R x1θ≤λsN(ds,dθ,dx),

λt = µ+
∫
[0,t)×R+×R ϕ(t− s)1θ≤λsN(ds,dθ,dx),

has a unique solution such that H and S are adapted and λ is predictable with
respect to the Poisson filtration.
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Definition of the compound Hawkes process

Illustration for a simple Hawkes process

Figure: A simulation with ϕ(s) = 2se−3s and µ = 0.5.
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Behaviour for large T

The long time behaviour of H

Do we have a CLT for H?

We define the martingale MT = HT −
∫ T

0
λtdt. For the simple Hawkes

process, Bacry et al. proved that the normalized martingale

MT√
T

=⇒
T→+∞

N (0, σ2),

where σ2 = µ
1−∥ϕ∥1

.

Bacry et al. have also proved that for

HT −
∫ T

0
E[λt]dt√
T

=⇒
T→+∞

N (0, σ̃2),

where σ̃2 = µ
(1−∥ϕ∥1)3

.

What about the compound process?

Can we quantify the speed of convergence?
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Behaviour for large T

Stein’s method

A measure of the distance between two distributions LV and LG (or V and
G) is the Wasserstein metric

dW (V,G) = sup
f∈Lip

|E [f(V )− f(G)]| ,

with Lip = {f ∈ C1(R), ∥f ′∥∞ ≤ 1}.

If G ∼ N (0, γ2), C. Stein proved that

dW (V,G) ≤ sup
f∈FW

∣∣E [γ2f ′(V )− V f(V )
]∣∣ ,

with FW = {f ∈ C2(R), ∥f ′∥∞ ≤ 1, ∥f ′′∥∞ ≤ 2}.
How to obtain a bound if we plug in the normalized martingale FT ?

For the compound Hawkes process

FT =
ST − E[X]

∫ T

0
λsds√

T
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Behaviour for large T

The bound when FT is plugged

We replace V by FT and we take G ∼ N (0, σ2):

dW (FT , G) ≤ sup
f∈FW

∣∣E [σ2f ′(FT )− FT f(FT )
]∣∣

≤ sup
f∈FW

∣∣∣E [σ2f ′(FT )− δ
((

z(t,x)Z(t,θ)

)
(t,θ,x)∈R2

+×R

)
f(FT )

]∣∣∣ ,

Where δ is the divergence operator with respect to the Poisson measure,
defined as

δ(P ) =

∫
R2

+×R
P(t,θ,x) (N(dt,dθ,dx)− dtdθν(dx)) ,

and z and Z are the predictable processes z(t,x) = x
1t≤T√

T
and

Z(t,θ) = 1θ≤λt .

Mahmoud Khabou (IMT, IECL) Normal approximation of Hawkes functionals JP Angers 13 / 28



Behaviour for large T

The bound when FT is plugged

We replace V by FT and we take G ∼ N (0, σ2):

dW (FT , G) ≤ sup
f∈FW

∣∣E [σ2f ′(FT )− FT f(FT )
]∣∣

≤ sup
f∈FW

∣∣∣E [σ2f ′(FT )− δ
((

z(t,x)Z(t,θ)

)
(t,θ,x)∈R2

+×R

)
f(FT )

]∣∣∣ ,
Where δ is the divergence operator with respect to the Poisson measure,
defined as

δ(P ) =

∫
R2

+×R
P(t,θ,x) (N(dt,dθ,dx)− dtdθν(dx)) ,

and z and Z are the predictable processes z(t,x) = x
1t≤T√

T
and

Z(t,θ) = 1θ≤λt .

Mahmoud Khabou (IMT, IECL) Normal approximation of Hawkes functionals JP Angers 13 / 28
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Malliavin’s calculus for Hawkes processes

Malliavin’s calculus for Hawkes processes

Definition (Shift operator)

Let y ∈ R, t ∈ R+ and u ≤ t. The shift operator ε(u,y) consists of adding an
artificial jump/event at time u of height y in the third component:

Ht ◦ ε(u,y) = Hu + 1 +
∫
(u,t]×R+×R 1θ≤λs◦ε(u,y)

N(ds,dθ,dx),

St ◦ ε(u,y) = Su + y +
∫
(u,t]×R+×R x1θ≤λs◦ε(u,y)

N(ds,dθ,dx),

λt ◦ ε(u,y) = µ+
∫
(0,u)

ϕ(t− s)dHs + ϕ(t− u)

+
∫
(u,t)

ϕ(t− s)d(Ht ◦ ε(u,y)).

We extend the operator naturally to any random variable V ∈ σ(Hs, s ≤ t).

Definition (Malliavin’s derivative)

Let V ∈ σ(Sv, v ≤ t). For u ≤ t, the Malliavin derivative of V is defined as

D(u,y)V = V ◦ ε(u,y) − V.
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Malliavin’s calculus for Hawkes processes

Illustration for the intensity on a simple Hawkes process

Figure: The effect of adding a jump at time u = 5. The kernel is ϕ(s) = 0.5e−s.
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Malliavin’s calculus for Hawkes processes

Malliavin derivatives of H and λ

Figure: The processes Ĥu
t and λ̂u

t .

Derivative of the normalized martingale

D(u,y)FT =
1√
T

(
y + M̂

(u,y)
T

)
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Malliavin’s calculus for Hawkes processes

Integration by parts

Duality

Let (z(t,x))t≥0 be a predictable process and V ∈ σ(St, t ≥ 0). It holds that

E[δ(zZ)V ] = E

[∫
R+×R

λtz(t,x)D(t,x)V dtν(dx)

]
.

Verification for X ≡ 1, ϕ ≡ 0 and zt = 1t≤T :

E[(HT − µT )f(HT )] =

+∞∑
n=0

nf(n)e−µT (µT )n

n!
− µTE[f(HT )],

=

+∞∑
n=0

f(n)e−µT (µT )n

(n− 1)!
− µTE[f(HT )],

=E[µT (f(HT + 1)− f(HT ))].
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Bounds on the distance between Hawkes functionals and their
Gaussian limit
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Reminder

We would like to bound

sup
f∈FW

∣∣E [σ2f ′(FT )− FT f(FT )
]∣∣ ,

where FT = MT /
√
T and σ2 = E[X2]µ

1−∥ϕ∥1
.

We have FT = δ

((
x1s≤T√

T

)
(s,x)∈R+×R

Z
)

which yields thanks to the duality

formula

E [FT f(FT )] = E

[
δ

((
x1s≤T√

T

)
(s,x)

Z

)
f(FT )

]

= E

[∫
R+×R

x1s≤T√
T

D(s,x)f(FT )λsdsν(dx)

]

= E

[
1√
T

∫ T

0

∫
R
xD(s,x)f(FT )λsdsν(dx)

]
.
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Expansions

A Taylor expansion yields

D(s,x)f(FT ) = f ′(FT )D(s,x)FT +
1

2
f ′′(F̄ )|D(s,x)FT |2.

Hence

E
[
σ2f ′(FT )− FT f(FT )

]
=E

[
σ2f ′(FT )

]
− 1√

T
E

[
f ′(FT )

∫ T

0

∫
R
xD(s,x)FTλsdsν(dx)

]

− 1

2
√
T
E

[
f ′′(F̄ )

∫ T

0

∫
R
x|DsFT |2λsdsν(dx)

]
.

With D(s,x)FT = 1√
T

(
x+ M̂

(s,x)
T

)
.
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Reckless bound (1)

It is possible to directly factor and use ∥f ′∥∞ ≤ 1∣∣∣∣∣E
[
f ′(FT )

(
σ2 − 1√

T

∫ T

0

∫
R
xD(s,x)FTλsdsν(dx)

)]∣∣∣∣∣
≤ E

[∣∣∣∣σ2 − 1√
T

∫ T

0

∫
R
xD(s,x)FTλsdsν(dx)

∣∣∣∣
]
.

This bound can in turn be separated in three terms

1 A1,1 =

∣∣∣∣σ2 − E[X2]
T

∫ T

0
E[λs]ds

∣∣∣∣ = O
(
1
T

)
,

2 A1,2 = E[X2]
T E

[∣∣∣∫ T

0
λs − E[λs]ds

∣∣∣] = O
(

1√
T

)
,

3 A1,3 = |E[X]|
T E

[∣∣∣∫ T

0

∫
R xλsM̂

(t,x)
T dsν(dx)

∣∣∣] .
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[∣∣∣∣σ2 − 1√
T

∫ T

0

∫
R
xD(s,x)FTλsdsν(dx)

∣∣∣∣
]
.

This bound can in turn be separated in three terms

1 A1,1 =

∣∣∣∣σ2 − E[X2]
T

∫ T

0
E[λs]ds

∣∣∣∣ = O
(
1
T

)
,

2 A1,2 = E[X2]
T E

[∣∣∣∫ T

0
λs − E[λs]ds

∣∣∣] = O
(

1√
T

)
,

3 A1,3 = |E[X]|
T E

[∣∣∣∫ T

0

∫
R xλsM̂

(t,x)
T dsν(dx)

∣∣∣] .
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Reckless bound (2)

Recall that FT = MT√
T

=
ST−E[X]

∫ T
0

λsds√
T

.

The Gaussian limit is centered and its variance is σ2 = E[X2]µ
1−∥ϕ∥1

.

Theorem

If
∫ +∞
0

sϕ(s)ds < +∞ and E[X2] < +∞ then there exists a constant Cµ,ϕ,ν

independent from T such that

dW (FT , G) ≤ Cµ,ϕ,ν√
T

(
1 +

1√
T
E

[∣∣∣∣∣
∫ T

0

∫
R
xλsM̂

(s,x)
T dsν(dx)

∣∣∣∣∣
])

,

where G ∼ N (0, σ2).
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Commutation property (1)

Instead, we make the following observation

D(s,x)FT = D(s,x)δ

((
x
1s≤T√

T

)
(s,x)∈R+×R

Z

)

and benefit from the following commutation property (for a deterministic z)

D(s,x)δ(zZ) = z(s,x) + δ(zẐs)

where Ẑs
(r,θ) = 1r>s1λr<θ≤λr◦ε(s,1) .
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Commutation property (2)

Using this property we have that

E

[
f ′(FT )

(
σ2 − 1√

T

∫ T

0

∫
R
xD(s,x)FTλsdsν(dx)

)]

=E

[
f ′(FT )

(
σ2 − 1√

T

∫ T

0

∫
R

x2

√
T
λsdsν(dx)

)]

+ E

[
f ′(FT )√

T

(∫ T

0

∫
R
δ(zẐs)λsdsν(dx)

)]
.

And we show that

E
[
f ′(FT )

(∫ T

0

∫
R
δ(zẐs)λsdsν(dx)

)]
= E

[∫ T

0

∫
R
λsEs[f

′(FT )δ(zẐs)]dsν(dx)

]
= 0.
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√
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Application to the normalized martingale

Recall that FT = MT√
T

=
ST−E[X]

∫ T
0

λsds√
T

.

The Gaussian limit is centered and its variance is σ2 = E[X2]µ
1−∥ϕ∥1

.

Theorem

If
∫ +∞
0

sϕ(s)ds < +∞ and E[X2] < +∞, then there exists Cµ,ϕ,ν > 0
(depending only on µ, ϕ, ν) such that

dW (FT , G) ≤ Cµ,ϕ,ν√
T

,

where G ∼ N (0, σ2).
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Generalisation (deterministic compensator)

Theorem

Assume that E[X2] < +∞ and let

ϖ := µ
E[X]

1− ∥ϕ∥1
and ΓT :=

ST −ϖT√
T

, T > 0.

Then, there exists C ′
µ,ϕ,ν > 0 (depending only on µ, ∥ϕ∥1, ν) such that

dW (ΓT ,N (0, ζ2)) ≤
C ′

µ,ϕ,ν√
T

, T > 0,

where

ζ2 := µ
E[X2] + ∥ϕ∥1(E[X2]− (E[X1])

2)(∥ϕ∥1 − 2)

(1− ∥ϕ∥1)3
.
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Fin
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