Normal approximation of compound Hawkes functionals

Mahmoud Khabou¹², Nicolas Privault³ and Anthony Réveillac¹

Institut de Mathématiques de Toulouse¹, Institut Élie Cartan de Lorraine², Nanyang Technological University³

> Journées de Probabilités 20 Juin 2023

• • • • • • • • • • • •

- Definition of the compound Hawkes process
- \bigcirc Behaviour for large T
- In Malliavin's calculus for Hawkes processes
- Bounds on the distance between Hawkes functionals and their Gaussian limit

< □ > < □ > < □ > < □ > < □ >

Definition of the compound Hawkes process

メロト メタト メヨト メヨト

Simple counting processes and their intensities

Definition (Simple counting process)

A stochastic process $(H_t)_{t\in\mathbb{R}_+}$ is called a simple counting process if

- $H_t \ge 0$ for any $t \ge 0$,
- H is non-decreasing,
- *H* has jumps of size 1.

Giving a simple counting process is equivalent to giving an infinite increasing sequence of jumping times

 $0 < \tau_1 < \tau_2 < \cdots$

Simple counting processes and their intensities

Definition (Simple counting process)

A stochastic process $(H_t)_{t\in\mathbb{R}_+}$ is called a simple counting process if

- $H_t \ge 0$ for any $t \ge 0$,
- H is non-decreasing,
- *H* has jumps of size 1.

Giving a simple counting process is equivalent to giving an infinite increasing sequence of jumping times

 $0 < \tau_1 < \tau_2 < \cdots$

Definition (The intensity process)

The intensity/rate process $(\lambda_t)_{t\in\mathbb{R}_+}$ is the predictable process defined as

$$\lambda_t \mathrm{d}t = \mathbb{E}[H_{t+\mathrm{d}t} - H_t | \mathcal{F}_{t^-}].$$

イロト イ団ト イヨト イヨト

The simple Hawkes process

Definition

Let H be a counting process. We say that H is a simple Hawkes process if its intensity λ follows the dynamics

$$\lambda_t = \mu + \int_0^{t^-} \phi(t-s) \mathrm{d}H_s = \mu + \sum_{\tau_k < t} \phi(t-\tau_k).$$

Where ϕ is a non-negative integrable kernel such that $\|\phi\|_1 < 1$. The constant $\mu > 0$ is called the baseline intensity.

Definition of the compound Hawkes process

Let $(X_k)_{k\in\mathbb{N}}$ be *i.i.d* of distribution ν . Let H be a Hawkes process and assume $X\perp\!\!\!\perp H$. The sum

$$S_T = \sum_{k=1}^{H_T} X_k, \quad T \ge 0$$

is called a compound Hawkes process.

Figure: The compound Hawkes process with a kernel $\phi(s) = 4se^{-4s}$, $\mu = 1$ and $X \sim \mathcal{E}(1)$.

The simple Hawkes process defined as Poisson embedding

The Hawkes process as thinning from a Poisson measure

Let $N(t,\theta)$ be a two-component Poisson measure of intensity $\mathrm{d}t\mathrm{d}\theta.$ The following SDE

$$\begin{cases} H_t &= \int_{[0,t] \times \mathbb{R}_+} \mathbb{1}_{\theta \le \lambda_s} N(\mathrm{d}s, \mathrm{d}\theta), \\ \lambda_t &= \mu + \int_{[0,t) \times \mathbb{R}_+} \phi(t-s) \mathbb{1}_{\theta \le \lambda_s} N(\mathrm{d}s, \mathrm{d}\theta), \end{cases}$$

has a unique solution such that H is adapted and λ is predictable with respect to the Poisson filtration.

A D > A B > A B > A

Generalisation: The compound Hawkes process

The Hawkes process as thinning from a Poisson measure

Let $N(t,\theta,x)$ be a three-component Poisson measure of intensity ${\rm d}t{\rm d}\theta\nu({\rm d}x).$ The following SDE

$$\begin{cases} H_t &= \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} \mathbbm{1}_{\theta \leq \lambda_s} N(\mathrm{d}s, \mathrm{d}\theta, \mathrm{d}x), \\ S_t &= \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} x \mathbbm{1}_{\theta \leq \lambda_s} N(\mathrm{d}s, \mathrm{d}\theta, \mathrm{d}x), \\ \lambda_t &= \mu + \int_{[0,t) \times \mathbb{R}_+ \times \mathbb{R}} \phi(t-s) \mathbbm{1}_{\theta \leq \lambda_s} N(\mathrm{d}s, \mathrm{d}\theta, \mathrm{d}x), \end{cases}$$

has a unique solution such that H and S are adapted and λ is predictable with respect to the Poisson filtration.

Illustration for a simple Hawkes process

Figure: A simulation with $\phi(s) = 2se^{-3s}$ and $\mu = 0.5$.

・ロト ・回ト ・ヨト

글 🛌 😑

Behaviour for large ${\cal T}$

・ロト ・回ト ・ヨト ・ヨト

The long time behaviour of ${\cal H}$

• Do we have a CLT for *H*?

イロン イ団 とく ヨン イヨン

Ξ.

- Do we have a CLT for *H*?
- We define the martingale $M_T = H_T \int_0^T \lambda_t dt$. For the simple Hawkes process, Bacry *et al.* proved that the normalized martingale

$$\frac{M_T}{\sqrt{T}} \underset{T \to +\infty}{\Longrightarrow} \mathcal{N}(0, \sigma^2),$$

where
$$\sigma^2 = \frac{\mu}{1 - \|\phi\|_1}$$
.

- Do we have a CLT for *H*?
- We define the martingale $M_T = H_T \int_0^T \lambda_t dt$. For the simple Hawkes process, Bacry *et al.* proved that the normalized martingale

$$\frac{M_T}{\sqrt{T}} \underset{T \to +\infty}{\Longrightarrow} \mathcal{N}(0, \sigma^2),$$

where $\sigma^2 = \frac{\mu}{1 - \|\phi\|_1}$.

• Bacry et al. have also proved that for

$$\frac{H_T - \int_0^T \mathbb{E}[\lambda_t] \mathrm{d}t}{\sqrt{T}} \underset{T \to +\infty}{\Longrightarrow} \mathcal{N}(0, \tilde{\sigma}^2),$$

where $\tilde{\sigma}^2 = \frac{\mu}{(1-\|\phi\|_1)^3}$.

- Do we have a CLT for *H*?
- We define the martingale $M_T = H_T \int_0^T \lambda_t dt$. For the simple Hawkes process, Bacry *et al.* proved that the normalized martingale

$$\frac{M_T}{\sqrt{T}} \underset{T \to +\infty}{\Longrightarrow} \mathcal{N}(0, \sigma^2),$$

where $\sigma^2 = \frac{\mu}{1 - \|\phi\|_1}$.

• Bacry et al. have also proved that for

$$\frac{H_T - \int_0^T \mathbb{E}[\lambda_t] \mathrm{d}t}{\sqrt{T}} \underset{T \to +\infty}{\Longrightarrow} \mathcal{N}(0, \tilde{\sigma}^2),$$

where $\tilde{\sigma}^2 = \frac{\mu}{(1-\|\phi\|_1)^3}$.

• What about the compound process?

- Do we have a CLT for *H*?
- We define the martingale $M_T = H_T \int_0^T \lambda_t dt$. For the simple Hawkes process, Bacry *et al.* proved that the normalized martingale

$$\frac{M_T}{\sqrt{T}} \underset{T \to +\infty}{\Longrightarrow} \mathcal{N}(0, \sigma^2),$$

where $\sigma^2 = \frac{\mu}{1 - \|\phi\|_1}$.

• Bacry et al. have also proved that for

$$\frac{H_T - \int_0^T \mathbb{E}[\lambda_t] \mathrm{d}t}{\sqrt{T}} \underset{T \to +\infty}{\Longrightarrow} \mathcal{N}(0, \tilde{\sigma}^2),$$

where $\tilde{\sigma}^2 = \frac{\mu}{(1-\|\phi\|_1)^3}$.

- What about the compound process?
- Can we quantify the speed of convergence?

• A measure of the distance between two distributions \mathcal{L}_V and \mathcal{L}_G (or V and G) is the Wasserstein metric

$$d_W(V,G) = \sup_{f \in Lip} \left| \mathbb{E} \left[f(V) - f(G) \right] \right|,$$

with $Lip = \{f \in \mathcal{C}^1(\mathbb{R}), \|f'\|_\infty \leq 1\}.$

イロト イ団ト イヨト イヨト

æ

• A measure of the distance between two distributions \mathcal{L}_V and \mathcal{L}_G (or V and G) is the Wasserstein metric

$$d_W(V,G) = \sup_{f \in Lip} \left| \mathbb{E} \left[f(V) - f(G) \right] \right|,$$

with $Lip = \{f \in \mathcal{C}^1(\mathbb{R}), \|f'\|_{\infty} \le 1\}.$ • If $G \sim \mathcal{N}(0, \gamma^2)$, C. Stein proved that

$$d_W(V,G) \leq \sup_{f \in \mathcal{F}_W} \left| \mathbb{E} \left[\gamma^2 f'(V) - V f(V) \right] \right|,$$

with $\mathcal{F}_W = \{ f \in \mathcal{C}^2(\mathbb{R}), \| f' \|_{\infty} \le 1, \| f'' \|_{\infty} \le 2 \}.$

< ロ > < 同 > < 三 > < 三 > 、

• A measure of the distance between two distributions \mathcal{L}_V and \mathcal{L}_G (or V and G) is the Wasserstein metric

$$d_W(V,G) = \sup_{f \in Lip} \left| \mathbb{E} \left[f(V) - f(G) \right] \right|,$$

with $Lip = \{f \in \mathcal{C}^1(\mathbb{R}), \|f'\|_{\infty} \leq 1\}.$ • If $G \sim \mathcal{N}(0, \gamma^2)$, C. Stein proved that

$$d_W(V,G) \le \sup_{f \in \mathcal{F}_W} \left| \mathbb{E} \left[\gamma^2 f'(V) - V f(V) \right] \right|,$$

with $\mathcal{F}_W = \{ f \in \mathcal{C}^2(\mathbb{R}), \|f'\|_{\infty} \le 1, \|f''\|_{\infty} \le 2 \}.$

• How to obtain a bound if we plug in the normalized martingale F_T ?

< ロ > < 同 > < 三 > < 三 > 、

• A measure of the distance between two distributions \mathcal{L}_V and \mathcal{L}_G (or V and G) is the Wasserstein metric

$$d_W(V,G) = \sup_{f \in Lip} \left| \mathbb{E} \left[f(V) - f(G) \right] \right|,$$

with $Lip = \{f \in \mathcal{C}^1(\mathbb{R}), \|f'\|_{\infty} \le 1\}.$ • If $G \sim \mathcal{N}(0, \gamma^2)$, C. Stein proved that

$$d_W(V,G) \le \sup_{f \in \mathcal{F}_W} \left| \mathbb{E} \left[\gamma^2 f'(V) - V f(V) \right] \right|,$$

with $\mathcal{F}_W = \{ f \in \mathcal{C}^2(\mathbb{R}), \| f' \|_{\infty} \le 1, \| f'' \|_{\infty} \le 2 \}.$

- How to obtain a bound if we plug in the normalized martingale F_T ?
- For the compound Hawkes process

$$F_T = \frac{S_T - \mathbb{E}[X] \int_0^T \lambda_s \mathrm{d}s}{\sqrt{T}}$$

The bound when F_T is plugged

• We replace V by F_T and we take $G \sim \mathcal{N}(0, \sigma^2)$:

$$d_W(F_T,G) \leq \sup_{f \in \mathcal{F}_W} \left| \mathbb{E} \left[\sigma^2 f'(F_T) - F_T f(F_T) \right] \right|$$

$$\leq \sup_{f \in \mathcal{F}_W} \left| \mathbb{E} \left[\sigma^2 f'(F_T) - \delta \left(\left(z_{(t,x)} \mathcal{Z}_{(t,\theta)} \right)_{(t,\theta,x) \in \mathbb{R}^2_+ \times \mathbb{R}} \right) f(F_T) \right] \right|,$$

イロン イ団 とく ヨン イヨン

The bound when F_T is plugged

• We replace V by F_T and we take $G \sim \mathcal{N}(0, \sigma^2)$:

$$d_W(F_T, G) \leq \sup_{f \in \mathcal{F}_W} \left| \mathbb{E} \left[\sigma^2 f'(F_T) - F_T f(F_T) \right] \right|$$

$$\leq \sup_{f \in \mathcal{F}_W} \left| \mathbb{E} \left[\sigma^2 f'(F_T) - \delta \left(\left(z_{(t,x)} \mathcal{Z}_{(t,\theta)} \right)_{(t,\theta,x) \in \mathbb{R}^2_+ \times \mathbb{R}} \right) f(F_T) \right] \right|,$$

 $\bullet\,$ Where δ is the divergence operator with respect to the Poisson measure, defined as

$$\delta(P) = \int_{\mathbb{R}^2_+ \times \mathbb{R}} P_{(t,\theta,x)} \left(N(\mathrm{d}t, \mathrm{d}\theta, \mathrm{d}x) - \mathrm{d}t \mathrm{d}\theta \nu(\mathrm{d}x) \right),$$

and z and $\mathcal Z$ are the predictable processes $z_{(t,x)}=x\frac{\mathbbm{1}_{t\leq T}}{\sqrt{T}}$ and $\mathcal Z_{(t,\theta)}=\mathbbm{1}_{\theta\leq\lambda_t}.$

イロト イヨト イヨト イヨト

Malliavin's calculus for Hawkes processes

メロト メタト メヨト メヨト

Malliavin's calculus for Hawkes processes

Definition (Shift operator)

Let $y \in \mathbb{R}$, $t \in \mathbb{R}_+$ and $u \leq t$. The shift operator $\varepsilon_{(u,y)}$ consists of adding an artificial jump/event at time u of height y in the third component:

$$\begin{cases} H_t \circ \varepsilon_{(u,y)} = & H_u + 1 + \int_{(u,t] \times \mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\theta \le \lambda_s \circ \varepsilon_{(u,y)}} N(\mathrm{d}s, \mathrm{d}\theta, \mathrm{d}x), \\ S_t \circ \varepsilon_{(u,y)} = & S_u + y + \int_{(u,t] \times \mathbb{R}_+ \times \mathbb{R}} x \mathbb{1}_{\theta \le \lambda_s \circ \varepsilon_{(u,y)}} N(\mathrm{d}s, \mathrm{d}\theta, \mathrm{d}x), \\ \lambda_t \circ \varepsilon_{(u,y)} = & \mu + \int_{(0,u)} \phi(t-s) \mathrm{d}H_s + \phi(t-u) \\ & + \int_{(u,t)} \phi(t-s) \mathrm{d}(H_t \circ \varepsilon_{(u,y)}). \end{cases}$$

We extend the operator naturally to any random variable $V \in \sigma(H_s, s \leq t)$.

Definition (Malliavin's derivative)

Let $V \in \sigma(S_v, v \leq t)$. For $u \leq t$, the Malliavin derivative of V is defined as

$$D_{(u,y)}V = V \circ \varepsilon_{(u,y)} - V.$$

Illustration for the intensity on a simple Hawkes process

Figure: The effect of adding a jump at time u = 5. The kernel is $\phi(s) = 0.5e^{-s}$.

・ロト ・回ト ・ヨト

Malliavin derivatives of H and λ

Figure: The processes \hat{H}_t^u and $\hat{\lambda}_t^u$.

・ロト ・回ト ・ヨト

글 🛌 😑

Malliavin derivatives of H and λ

Figure: The processes \hat{H}_t^u and $\hat{\lambda}_t^u$.

Derivative of the normalized martingale

$$D_{(u,y)}F_T = \frac{1}{\sqrt{T}} \left(y + \hat{M}_T^{(u,y)} \right)$$

Integration by parts

Duality

Let $(z_{(t,x)})_{t\geq 0}$ be a predictable process and $V\in\sigma(S_t,t\geq 0).$ It holds that

$$\mathbb{E}[\delta(z\mathcal{Z})V] = \mathbb{E}\left[\int_{\mathbb{R}_+\times\mathbb{R}} \lambda_t z_{(t,x)} D_{(t,x)} V \mathrm{d}t\nu(\mathrm{d}x)\right].$$

Verification for $X \equiv 1$, $\phi \equiv 0$ and $z_t = \mathbb{1}_{t \leq T}$:

$$\mathbb{E}[(H_T - \mu T)f(H_T)] = \sum_{n=0}^{+\infty} nf(n)e^{-\mu T} \frac{(\mu T)^n}{n!} - \mu T\mathbb{E}[f(H_T)],$$
$$= \sum_{n=0}^{+\infty} f(n)e^{-\mu T} \frac{(\mu T)^n}{(n-1)!} - \mu T\mathbb{E}[f(H_T)],$$
$$= \mathbb{E}[\mu T \left(f(H_T + 1) - f(H_T)\right)].$$

イロト イヨト イヨト イヨト

æ

Bounds on the distance between Hawkes functionals and their Gaussian limit

< □ > < □ > < □ > < □ > < □ >

Ξ.

Reminder

• We would like to bound

$$\sup_{f\in\mathcal{F}_W}\left|\mathbb{E}\left[\sigma^2 f'(F_T) - F_T f(F_T)\right]\right|,\,$$

where $F_T = M_T / \sqrt{T}$ and $\sigma^2 = \frac{\mathbb{E}[X^2]\mu}{1 - \|\phi\|_1}$.

イロト イロト イヨト イヨト 二日

Reminder

• We would like to bound

$$\sup_{f\in\mathcal{F}_W} \left| \mathbb{E}\left[\sigma^2 f'(F_T) - F_T f(F_T) \right] \right|,$$

where
$$F_T = M_T / \sqrt{T}$$
 and $\sigma^2 = \frac{\mathbb{E}[X^2]\mu}{1 - \|\phi\|_1}$.
• We have $F_T = \delta\left(\left(\frac{x\mathbb{1}_{s \leq T}}{\sqrt{T}}\right)_{(s,x) \in \mathbb{R}_+ \times \mathbb{R}} \mathcal{Z}\right)$ which yields thanks to the duality formula

$$\mathbb{E}\left[F_T f(F_T)\right] = \mathbb{E}\left[\delta\left(\left(\frac{x\mathbb{1}_{s\leq T}}{\sqrt{T}}\right)_{(s,x)}\mathcal{Z}\right)f(F_T)\right]$$
$$= \mathbb{E}\left[\int_{\mathbb{R}_+\times\mathbb{R}}\frac{x\mathbb{1}_{s\leq T}}{\sqrt{T}}D_{(s,x)}f(F_T)\lambda_s\mathrm{d}s\nu(\mathrm{d}x)\right]$$
$$= \mathbb{E}\left[\frac{1}{\sqrt{T}}\int_0^T\int_{\mathbb{R}}xD_{(s,x)}f(F_T)\lambda_s\mathrm{d}s\nu(\mathrm{d}x)\right].$$

イロト イヨト イヨト イヨト

Expansions

• A Taylor expansion yields

$$D_{(s,x)}f(F_T) = f'(F_T)D_{(s,x)}F_T + \frac{1}{2}f''(\bar{F})|D_{(s,x)}F_T|^2.$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Expansions

• A Taylor expansion yields

$$D_{(s,x)}f(F_T) = f'(F_T)D_{(s,x)}F_T + \frac{1}{2}f''(\bar{F})|D_{(s,x)}F_T|^2.$$

Hence

$$\mathbb{E}\left[\sigma^{2}f'(F_{T}) - F_{T}f(F_{T})\right] = \mathbb{E}\left[\sigma^{2}f'(F_{T})\right] - \frac{1}{\sqrt{T}}\mathbb{E}\left[f'(F_{T})\int_{0}^{T}\int_{\mathbb{R}}xD_{(s,x)}F_{T}\lambda_{s}\mathrm{d}s\nu(\mathrm{d}x)\right] - \frac{1}{2\sqrt{T}}\mathbb{E}\left[f''(\bar{F})\int_{0}^{T}\int_{\mathbb{R}}x|D_{s}F_{T}|^{2}\lambda_{s}\mathrm{d}s\nu(\mathrm{d}x)\right].$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Expansions

• A Taylor expansion yields

$$D_{(s,x)}f(F_T) = f'(F_T)D_{(s,x)}F_T + \frac{1}{2}f''(\bar{F})|D_{(s,x)}F_T|^2.$$

Hence

$$\mathbb{E}\left[\sigma^{2}f'(F_{T}) - F_{T}f(F_{T})\right] = \mathbb{E}\left[\sigma^{2}f'(F_{T})\right] \\ - \frac{1}{\sqrt{T}}\mathbb{E}\left[f'(F_{T})\int_{0}^{T}\int_{\mathbb{R}}xD_{(s,x)}F_{T}\lambda_{s}\mathrm{d}s\nu(\mathrm{d}x)\right] \\ - \frac{1}{2\sqrt{T}}\mathbb{E}\left[f''(\bar{F})\int_{0}^{T}\int_{\mathbb{R}}x|D_{s}F_{T}|^{2}\lambda_{s}\mathrm{d}s\nu(\mathrm{d}x)\right].$$
With $D_{r} = E_{r} = \frac{1}{2}\left(x + \hat{\mu}t^{(s,x)}\right)$

• With
$$D_{(s,x)}F_T = \frac{1}{\sqrt{T}} \left(x + \hat{M}_T^{(s,x)} \right).$$

э.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Reckless bound (1)

It is possible to directly factor and use $\|f'\|_\infty \leq 1$

$$\begin{aligned} \left| \mathbb{E} \left[f'(F_T) \left(\sigma^2 - \frac{1}{\sqrt{T}} \int_0^T \int_{\mathbb{R}} x D_{(s,x)} F_T \lambda_s \mathrm{d} s \nu(\mathrm{d} x) \right) \right] \right| \\ & \leq \mathbb{E} \left[\left| \sigma^2 - \frac{1}{\sqrt{T}} \int_0^T \int_{\mathbb{R}} x D_{(s,x)} F_T \lambda_s \mathrm{d} s \nu(\mathrm{d} x) \right| \right] \end{aligned}$$

イロト イヨト イヨト イヨト

Reckless bound (1)

It is possible to directly factor and use $\|f'\|_\infty \leq 1$

$$\begin{aligned} \left| \mathbb{E} \left[f'(F_T) \left(\sigma^2 - \frac{1}{\sqrt{T}} \int_0^T \int_{\mathbb{R}} x D_{(s,x)} F_T \lambda_s \mathrm{d} s \nu(\mathrm{d} x) \right) \right] \right| \\ & \leq \mathbb{E} \left[\left| \sigma^2 - \frac{1}{\sqrt{T}} \int_0^T \int_{\mathbb{R}} x D_{(s,x)} F_T \lambda_s \mathrm{d} s \nu(\mathrm{d} x) \right| \right] \end{aligned}$$

This bound can in turn be separated in three terms

$$\mathbf{O} \quad A_{1,1} = \left| \sigma^2 - \frac{\mathbb{E}[X^2]}{T} \int_0^T \mathbb{E}[\lambda_s] \mathrm{d}s \right| = O\left(\frac{1}{T}\right),$$
$$\mathbf{O} \quad A_{1,2} = \frac{\mathbb{E}[X^2]}{T} \mathbb{E}\left[\left| \int_0^T \lambda_s - \mathbb{E}[\lambda_s] \mathrm{d}s \right| \right] = O\left(\frac{1}{\sqrt{T}}\right),$$

イロト イヨト イヨト イヨト

Reckless bound (1)

It is possible to directly factor and use $\|f'\|_\infty \leq 1$

$$\begin{aligned} \left| \mathbb{E} \left[f'(F_T) \left(\sigma^2 - \frac{1}{\sqrt{T}} \int_0^T \int_{\mathbb{R}} x D_{(s,x)} F_T \lambda_s \mathrm{d} s \nu(\mathrm{d} x) \right) \right] \right| \\ & \leq \mathbb{E} \left[\left| \sigma^2 - \frac{1}{\sqrt{T}} \int_0^T \int_{\mathbb{R}} x D_{(s,x)} F_T \lambda_s \mathrm{d} s \nu(\mathrm{d} x) \right| \right] \end{aligned}$$

This bound can in turn be separated in three terms

$$\begin{aligned} \bullet \quad & A_{1,1} = \left| \sigma^2 - \frac{\mathbb{E}[X^2]}{T} \int_0^T \mathbb{E}[\lambda_s] \mathrm{d}s \right| = O\left(\frac{1}{T}\right), \\ \bullet \quad & A_{1,2} = \frac{\mathbb{E}[X^2]}{T} \mathbb{E}\left[\left| \int_0^T \lambda_s - \mathbb{E}[\lambda_s] \mathrm{d}s \right| \right] = O\left(\frac{1}{\sqrt{T}}\right), \\ \bullet \quad & A_{1,3} = \frac{|\mathbb{E}[X]|}{T} \mathbb{E}\left[\left| \int_0^T \int_{\mathbb{R}} x \lambda_s \hat{M}_T^{(t,x)} \mathrm{d}s\nu(\mathrm{d}x) \right| \right]. \end{aligned}$$

イロト イヨト イヨト イヨト

Reckless bound (2)

• Recall that
$$F_T = \frac{M_T}{\sqrt{T}} = \frac{S_T - \mathbb{E}[X] \int_0^T \lambda_s ds}{\sqrt{T}}$$
.

• The Gaussian limit is centered and its variance is $\sigma^2 = \frac{\mathbb{E}[X^2]\mu}{1-\|\phi\|_1}$.

Theorem

If $\int_0^{+\infty} s\phi(s) \mathrm{d}s < +\infty$ and $\mathbb{E}[X^2] < +\infty$ then there exists a constant $C_{\mu,\phi,\nu}$ independent from T such that

$$d_W(F_T, G) \le \frac{C_{\mu,\phi,\nu}}{\sqrt{T}} \left(1 + \frac{1}{\sqrt{T}} \mathbb{E}\left[\left| \int_0^T \int_{\mathbb{R}} x \lambda_s \hat{M}_T^{(s,x)} \mathrm{d}s\nu(\mathrm{d}x) \right| \right] \right)$$

where $G \sim \mathcal{N}(0, \sigma^2)$.

æ

イロト イヨト イヨト イヨト

Commutation property (1)

• Instead, we make the following observation

$$D_{(s,x)}F_T = D_{(s,x)}\delta\left(\left(x\frac{\mathbb{1}_{s\leq T}}{\sqrt{T}}\right)_{(s,x)\in\mathbb{R}_+\times\mathbb{R}}\mathcal{Z}\right)$$

and benefit from the following commutation property (for a deterministic z)

$$D_{(s,x)}\delta(z\mathcal{Z}) = z_{(s,x)} + \delta(z\hat{\mathcal{Z}}^s)$$

where $\hat{\mathcal{Z}}^s_{(r,\theta)} = \mathbbm{1}_{r>s} \mathbbm{1}_{\lambda_r < \theta \leq \lambda_r \circ \varepsilon_{(s,1)}}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Commutation property (2)

Using this property we have that

$$\mathbb{E}\left[f'(F_T)\left(\sigma^2 - \frac{1}{\sqrt{T}}\int_0^T \int_{\mathbb{R}} x D_{(s,x)}F_T\lambda_s \mathrm{d}s\nu(\mathrm{d}x)\right)\right]$$
$$= \mathbb{E}\left[f'(F_T)\left(\sigma^2 - \frac{1}{\sqrt{T}}\int_0^T \int_{\mathbb{R}} \frac{x^2}{\sqrt{T}}\lambda_s \mathrm{d}s\nu(\mathrm{d}x)\right)\right]$$
$$+ \mathbb{E}\left[\frac{f'(F_T)}{\sqrt{T}}\left(\int_0^T \int_{\mathbb{R}} \delta(z\hat{\mathcal{Z}}^s)\lambda_s \mathrm{d}s\nu(\mathrm{d}x)\right)\right].$$

イロト イヨト イヨト イヨト

Commutation property (2)

Using this property we have that

$$\mathbb{E}\left[f'(F_T)\left(\sigma^2 - \frac{1}{\sqrt{T}}\int_0^T \int_{\mathbb{R}} x D_{(s,x)}F_T\lambda_s \mathrm{d}s\nu(\mathrm{d}x)\right)\right]$$
$$= \mathbb{E}\left[f'(F_T)\left(\sigma^2 - \frac{1}{\sqrt{T}}\int_0^T \int_{\mathbb{R}} \frac{x^2}{\sqrt{T}}\lambda_s \mathrm{d}s\nu(\mathrm{d}x)\right)\right]$$
$$+ \mathbb{E}\left[\frac{f'(F_T)}{\sqrt{T}}\left(\int_0^T \int_{\mathbb{R}} \delta(z\hat{\mathcal{Z}}^s)\lambda_s \mathrm{d}s\nu(\mathrm{d}x)\right)\right].$$

And we show that

$$\mathbb{E}\left[f'(F_T)\left(\int_0^T \int_{\mathbb{R}} \delta(z\hat{\mathcal{Z}}^s)\lambda_s \mathrm{d}s\nu(\mathrm{d}x)\right)\right]$$
$$= \mathbb{E}\left[\int_0^T \int_{\mathbb{R}} \lambda_s \mathbb{E}_s[f'(F_T)\delta(z\hat{\mathcal{Z}}^s)]\mathrm{d}s\nu(\mathrm{d}x)\right] = 0.$$

Application to the normalized martingale

• Recall that
$$F_T = \frac{M_T}{\sqrt{T}} = \frac{S_T - \mathbb{E}[X] \int_0^T \lambda_s ds}{\sqrt{T}}$$
.

• The Gaussian limit is centered and its variance is $\sigma^2 = \frac{\mathbb{E}[X^2]\mu}{1-\|\phi\|_1}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Application to the normalized martingale

• Recall that
$$F_T = \frac{M_T}{\sqrt{T}} = \frac{S_T - \mathbb{E}[X] \int_0^T \lambda_s ds}{\sqrt{T}}$$

• The Gaussian limit is centered and its variance is $\sigma^2 = \frac{\mathbb{E}[X^2]\mu}{1-\|\phi\|_1}$.

Theorem

If $\int_0^{+\infty} s\phi(s)\mathrm{d} s<+\infty$ and $\mathbb{E}[X^2]<+\infty$, then there exists $C_{\mu,\phi,\nu}>0$ (depending only on μ,ϕ,ν) such that

$$d_W(F_T,G) \le \frac{C_{\mu,\phi,\nu}}{\sqrt{T}},$$

where $G \sim \mathcal{N}(0, \sigma^2)$.

æ

イロト イ団ト イヨト イヨト

Generalisation (deterministic compensator)

Theorem

Assume that $\mathbb{E}[X^2] < +\infty$ and let

$$\varpi := \mu \frac{\mathbb{E}[X]}{1 - \|\phi\|_1}$$
 and $\Gamma_T := \frac{S_T - \varpi T}{\sqrt{T}}, \quad T > 0.$

Then, there exists $C_{\mu,\phi,\nu}'>0$ (depending only on $\mu,\|\phi\|_1,\nu)$ such that

$$d_W(\Gamma_T, \mathcal{N}(0, \zeta^2)) \le \frac{C'_{\mu,\phi,\nu}}{\sqrt{T}}, \quad T > 0,$$

where

$$\zeta^{2} := \mu \frac{\mathbb{E}[X^{2}] + \|\phi\|_{1} (\mathbb{E}[X^{2}] - (\mathbb{E}[X_{1}])^{2}) (\|\phi\|_{1} - 2)}{(1 - \|\phi\|_{1})^{3}}$$

2

•

イロト イヨト イヨト イヨト

Merci!

Fin

List of articles

- Normal approximation of compound Hawkes functionals. *With N. Privault and A. Réveillac.* Published in Journal of Theoretical Probability
- The Malliavin-Stein method for Hawkes functionals. With C. Hillairet, L. Huang and A. Réveillac. Published in ALEA.
- The Malliavin-Stein method for the multivariate compound Hawkes process. Submitted.