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Definition of the compound Hawkes process

Definition of the compound Hawkes process
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Definition of the compound Hawkes process

Simple counting processes and their intensities

Definition (Simple counting process)

A stochastic process (H;);cr, is called a simple counting process if
e H; >0 foranyt>0,
@ H is non-decreasing,
@ H has jumps of size 1.

Giving a simple counting process is equivalent to giving an infinite increasing
sequence of jumping times
O<m<Tg< -
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Definition of the compound Hawkes process

Simple counting processes and their intensities

Definition (Simple counting process)

A stochastic process (H;);cr, is called a simple counting process if
e H; >0 foranyt>0,
@ H is non-decreasing,
@ H has jumps of size 1.

Giving a simple counting process is equivalent to giving an infinite increasing
sequence of jumping times
O<m<Tg< -

Definition (The intensity process)

The intensity/rate process (A\¢)¢cr, is the predictable process defined as

)\tdt = E[Ht-‘rdt - Ht|]:t*]~
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Definition of the compound Hawkes process

The simple Hawkes process

Definition

Let H be a counting process. We say that H is a simple Hawkes process if its
intensity A follows the dynamics

-
At:,u+/0 Ot — s)dH, = p+ Y o(t — 7).

T <t

Where ¢ is a non-negative integrable kernel such that ||¢]|; < 1. The constant
i > 0 is called the baseline intensity.
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Definition of the compound Hawkes process

Definition of the compound Hawkes process

Let (X%)ren be iid of distribution v. Let H be a Hawkes process and assume
X 1l H. The sum

Hr
St = Z X, T>0
k=1
is called a compound Hawkes process.

Intensity Ar

Seand H;

t

Figure: The compound Hawkes process with a kernel ¢(s) = 4se™** =1 and

X ~ E(1).
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Definition of the compound Hawkes process

The simple Hawkes process defined as Poisson embedding

The Hawkes process as thinning from a Poisson measure

Let N(t,0) be a two-component Poisson measure of intensity d¢df. The following
SDE

Hy = [p.xr, Lo<a,N(ds,do),

Av =pt f[o,t)xR+ ot — s)Lo<r, N(ds,df),

has a unique solution such that H is adapted and X is predictable with respect to
the Poisson filtration.
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Definition of the compound Hawkes process

Generalisation: The compound Hawkes process

The Hawkes process as thinning from a Poisson measure

Let N(t,0,z) be a three-component Poisson measure of intensity dtdfv(dz). The
following SDE

Ht = ~f[0,t]><]R+><]R ]lgg)\sN(dS,dg,dI),
S, = f[o’t]xRerRxﬂggAsN(ds,dﬁ,dx),
At =p+ f[o,t)xR+><R ot — s)Lg<r,N(ds,db,dx),

has a unique solution such that H and S are adapted and ) is predictable with
respect to the Poisson filtration.
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lllustration for a simple Hawkes process
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Figure: A simulation with ¢(s) = 2se™* and pu = 0.5.
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haviour for larg

Behaviour for large T’
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The long time behaviour of H

@ Do we have a CLT for H?
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The long time behaviour of H

@ Do we have a CLT for H?

o We define the martingale M = Hp — fOT Aedt. For the simple Hawkes

process, Bacry et al. proved that the normalized martingale
M-
I — N(0,0?),
VT T—+4oo

2 _
where 0° = .
-4l
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The long time behaviour of H

@ Do we have a CLT for H?

o We define the martingale M = Hp — fOT Aedt. For the simple Hawkes
process, Bacry et al. proved that the normalized martingale

My 9
VT T?oo N(©,0%),
2_ _p
where 0¢ = T=lal
@ Bacry et al. have also proved that for
Hr — [T E[\]dt )
0 = N(0,5°),
\/T T—+o00

~2 o
where 6° = (SR
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The long time behaviour of H

@ Do we have a CLT for H?

o We define the martingale M = Hp — fOT Aedt. For the simple Hawkes
process, Bacry et al. proved that the normalized martingale

My 9
VT T?oo N(©,0%),
2_ _p
where 0¢ = T=lal
@ Bacry et al. have also proved that for
Hr — [T E[\]dt )
0 = N(0,5°),
\/T T—+o00

~2 o
where 6° = (SR

@ What about the compound process?
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The long time behaviour of H

@ Do we have a CLT for H?

o We define the martingale M = Hp — fOT Aedt. For the simple Hawkes
process, Bacry et al. proved that the normalized martingale

My 9
VT T?oo N(©,0%),
2_ _p
where 0¢ = T=lal
@ Bacry et al. have also proved that for
Hr — [T E[\]dt )
0 = N(0,5°),
\/T T—+o00

~2 _ 2
where 6° = ESEINER
@ What about the compound process?

@ Can we quantify the speed of convergence?
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Stein's method

@ A measure of the distance between two distributions Ly and L5 (or V and
G) is the Wasserstein metric

dw(V,G) = sup E[f(V) = f(G)]I,

with Lip = {f € C'(R), [ f'[l~ < 1}.
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Stein's method

@ A measure of the distance between two distributions Ly and L5 (or V and
G) is the Wasserstein metric

dw(V,G) = sup E[f(V) = f(G)]I,

with Lip = {f € C'(R), || f'[lco < 1}.
e If G ~ N(0,7?), C. Stein proved that

dw (V,6) < sup E [ (V)= VIV,

with Fyy = {f € C*(R), [[f'llo0 < 1,1/ [l < 2}-
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Stein's method

@ A measure of the distance between two distributions Ly and L5 (or V and
G) is the Wasserstein metric

dw(V,G) = sup [E[f(V) = f(G)]],

fELip
with Lip = {f € C'(R), [| f'lloc <1}
e If G ~ N(0,7?), C. Stein proved that

WWQSQ?mWﬂW—WWm’

with Fyy = {f € C*(R), [[f'llo0 < 1,1/ [l < 2}-

@ How to obtain a bound if we plug in the normalized martingale Frp?
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Stein's method

@ A measure of the distance between two distributions Ly and L5 (or V and
G) is the Wasserstein metric

dw(V,G) = sup [E[f(V) = f(G)]],
fELip
with Lip = {f € C'(R), [| /"]l < 1}.
e If G ~ N(0,7?), C. Stein proved that

dw (V,6) < sup E [ (V)= VIV,

with Fyy = {f € C*(R), [[f'llo0 < 1,1/ [l < 2}-

@ How to obtain a bound if we plug in the normalized martingale Frp?

@ For the compound Hawkes process

 Sp—E[X] [ Ads
a VT

Iy

Mahmoud Khabou (IMT, IECL) Normal approximation of Hawkes functionals JP Angers



The bound when F7 is plugged

o We replace V by Fr and we take G ~ N (0, 02):

dw (Fr,G) < sup |E[o”f'(Fr)— Frf(Fr)]|
feFw

)

< sup ‘]E {UQJN(FT) -0 ((z(t,z)z(t,O))(t797£)€R2+XR> f(FT)}
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The bound when Fr is plugged

o We replace V by Fr and we take G ~ N (0, 02):

dw(FT, G) S sup |]E [0'2f/(FT) — FTf(FT)”
feFw

< sup ‘]E {UQJN(FT) -0 ((Z(t,z)z(t,O))(tﬂ’z)eRixR) f(FT)}

)

@ Where § is the divergence operator with respect to the Poisson measure,
defined as

o(P) = / Pt,6,2) (N(dt,do, dz) — dtdbv(dx)),
R3 xR

and z and Z are the predictable processes Z(t,0) = xL\thT and

Z(t,0) = Lo<x, -
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Malliavin’s calculus for Hawkes processes

Malliavin's calculus for Hawkes processes
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Malliavin’s calculus for Hawkes processes

Malliavin's calculus for Hawkes processes

Definition (Shift operator)

Let y € R, t € Ry and u <t. The shift operator £, ,) consists of adding an
artificial jump/event at time u of height y in the third component:

H;o E(u,y) = H,+1+ f(u,t]xR+ <R ]IQS/\SOE(u,wN(dSv de, dx)7
St o Eluy) = Su + y+ f(u,t]X]RJr xR m]log)\SOE(u,y)N(dsv de, d.fL'),
Ao Euy) = 1+ Jigu) @t —s)dHs + 6t — u)

e, t>¢ $)A(Hy 0 ).

We extend the operator naturally to any random variable V € o(Hyg, s < t).

Definition (Malliavin's derivative)

Let V € o(S,,v <t). For u < t, the Malliavin derivative of V is defined as

D)V =Voewy - V.
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Malliavin’s calculus for Hawkes processes

lllustration for the intensity on a simple Hawkes process
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1o<AN(t, 6)
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Figure: The effect of adding a jump at time u = 5. The kernel is ¢(s) = 0.5¢™°.
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Malliavin derivatives of H and \
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Figure: The processes HY and ;\f.
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Malliavin derivatives of H and \

081 —— DsHy=1+H}

Intensity Ac
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8
Time

Figure: The processes HY and ;\f.

Derivative of the normalized martingale

D(uy) Fr = % (y+ nrg)
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Integration by parts

Duality
Let (2(4,2))¢>0 be a predictable process and V' € o(S;,t > 0). It holds that

E[6(zZ)V] =E [ / Nez(0.0) Doy Vit (d)
R+ xR

Verification for X =1, ¢ =0 and z; = Li<7:
+oo

B(Hr WD) (Hr)) = 3 nfo)e™ 00— Tl 7)),

—Zf e S T ot

:E[uT (f(Hr + 1) — [(Hr))].
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Bounds on the distance between Hawkes functionals and their

Gaussian limit
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Bounds on the distance between Hawkes functionals and their Gaussian limit

@ We would like to bound

sup |E [o®f'(Fr) — Frf(Fr)]|,
feFw

where Fr = MT/\/T and 0® = E)ﬁ;]lﬁ'
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Reminder

@ We would like to bound

sup |E [o®f'(Fr) — Frf(Fr)]|,
feFw

where Fr = M7 //T and 02 = Eﬁgﬁ

o We have Fp = § ((“\/;T)( - z) which yields thanks to the duality
s,x)eR4 X

formula

E[Frf(Fr)] =E |6 ( (””]\l;;’)( )Z> F(Fr)

J?]].SST

L R+XR \/T

I T
=E %/0 /R.TD(S’m)f(FT)/\stZ/(dZ‘)‘| .
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Expansions

@ A Taylor expansion yields

1 _
D(s,x)f(FT) = f/(FT)D(s,x)FT + if//(F)‘D(s,x)FTP‘
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Expansions

@ A Taylor expansion yields

D(sa)f(Fr) = f'(Fr)D(s o Fr + %f”(F)\D(M)FTF.
@ Hence
E [0 f'(Fr) — Frf(Fr)] =E [o*f'(Fr)]

T
_ L]E f/(FT)/ /a:D(S’I)FT)\Sdsu(dx)]
o Jr

VT
1
_ﬁE

f(F) /OT/R;U|DSFT|2)\Sdsu(dx)].
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Expansions

@ A Taylor expansion yields

D(sa)f(Fr) = f'(Fr)D(s o Fr + %f”(F)\D(M)FTF.
@ Hence
E [0 f'(Fr) — Frf(Fr)] =E [o*f'(Fr)]

T
_ L]E f/(FT)/ /a:D(S’I)FT)\Sdsu(dx)]
o Jr

VT

1 . T 2
- 2\7@1@ f (F)/0 /R{I}|D5FT| AstV(dw)]~

o With D, ) Fr = = (m I M}s,x)).
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Reckless bound (1)

It is possible to directly factor and use || f/||oo <1

F(Fr) <a _7/ /xD”FT)\ dsu(dm))”

o? — —/ /xD(s oy Frsdsv(dr)

E

<E

] |
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Reckless bound (1)

It is possible to directly factor and use || f/||oo <1

F(Fr) <a _7/ /xD”FT)\ dsu(dm))”

o? — —/ /ﬂcD(s oy Frsdsv(dr)

E

<E

This bound can in turn be separated in three terms

@ Ai=lo =0(7),

s, HfOT As — E[)\S]dsH -0 (%),

s]ds

Q A
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Reckless bound (1)

It is possible to directly factor and use || f/||oo <1

F(Fr <a —7/ /xD”FT)\ dsu(dm))”

o? — —/ /ﬂcD(s oy Frsdsv(dr)

E

<E

] |

This bound can in turn be separated in three terms

Q@ A= |o slds| =0 (%),
s o).
Q A 3= Hfo Iz x/\qu(f’x)dsy(dm)‘ .
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Reckless bound (2)

VT VT

. L . . . E[X?2
@ The Gaussian limit is centered and its variance is 2 = (XClp

—E[X] [T Xsd
o Recall that Fp = Mz = SrBIX] Jy Aeds =

Theorem

If f0+°° s¢(s)ds < +oo and E[X?] < +o0 then there exists a constant C}, 4,

independent from T' such that
T ~
/ / x/\sM;S’m)dsy(dx) ,
0o JR

C 1
dw (Fr,G) < 222 (14 —_F
wbr, G) < = r ( VT

where G ~ N(0,02).
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Commutation property (1)

@ Instead, we make the following observation

11SST

\/T > (s,x)ERL xR

and benefit from the following commutation property (for a deterministic z)

Z

D(SJ)FT = D(S7w)(5 <£IJ

D(S)z)(S(ZZ) = Z(S)gj) + (5(2’25)

where Z¢ ;=15 515, <o<x, 00,1 -
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Commutation property (2)

Using this property we have that

o ( L / JES dw(dz))]
e ( . /OT / ;;Asdw(dx))]
f'(Fr) (/OT/Ra(zéS)Asdsu(dx)ﬂ .

E

=E
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Commutation property (2)

Using this property we have that

o ( L / JES dw(dz))]
e ( . /OT / ;;Asdw(dx))]
f'(Fr) <ATA5(225)ASdSV(d$)>] .

E

=E

And we show that

E[f’(Fﬂ( /0 ! /R 6(225)>\Sdsz/(dx))]

T
_E l /0 /R AEL[f (FT)6(ZZS)]d51/(d:c)] 0.
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Application to the normalized martingale

My _ ST—E[X] ST Xsds
VT VT )

@ The Gaussian limit is centered and its variance is o

@ Recall that Fr =

2 _ E[X’u
1-[lollx "
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Application to the normalized martingale

VT VT

. L . . . E[X?2
@ The Gaussian limit is centered and its variance is 02 = 1£\|¢]\ﬁ'

—E[X] [T Asd
o Recall that Fp = Mz — ST=EX]Jy Ads

Theorem

If f0+°° sp(s)ds < +oo and E[X?] < +o00, then there exists C}, 4, > 0
(depending only on p, ¢, ) such that

C
d F ,G < Ha@sW’
W( T ) = ﬁ

where G ~ N(0,02?).
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Bounds on the distance between Hawkes functionals and their Gaussian limit

Generalisation (deterministic compensator)

Theorem

Assume that E[X?] < +oc0 and let

E[X —wT
w : [X] and FT::ST “

T VT

Then, there exists C}, , , > 0 (depending only on y, [|¢[|1,v) such that

T>0.

Ol
dw (T, N(0,¢2)) < —2v 7 5,
W( T ( C))— ﬁ

where
ME[Xz] + ol (BIX?] = (E[X])*) (]l — 2)

2._ )
< T TDE
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