Non co-adapted Couplings of Brownian motion in subRiemannian manifolds

Journées de Probabilités 2023

BENEFICE Magalie

UNIVERSITÉ DE BORDEAUX Phd student -IMB

22nd June 2023

Phd supervisors : Marc Arnaudon, Michel Bonnefont

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

2 Successful couplings of Brownian motion

Successful coupling on subRiemannian manifolds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

SubRiemannian structure of the Heisenberg group

Example (The Heisenberg group)

• $\mathbb{H}=(\mathbb{R}^3,\star)$ such that for $(x,y,z), \ (x',y',z')\in\mathbb{H},$

$$(x, y, z) \star (x', y', z') = (x + x', y + y', z + z' + \frac{1}{2}(xy' - yx'))$$

• Horizontal space :
$$\mathcal{H}_{(x,y,z)} = Vect(X_{(x,y,z)}, Y_{(x,y,z)})$$

with $X_{(x,y,z)} = \partial_x - \frac{y}{2}\partial_z$ and $Y_{(x,y,z)} = \partial_y + \frac{x}{2}\partial_z$

- Horizontal curve : $\gamma : I \to \mathbb{H}$ smooth such that, $\dot{\gamma}(t) \in \mathcal{H}_{\gamma(t)} \ \forall \ t \in I$
- Carnot-Carathéodory distance between g and $h \in \mathbb{H}$:

 $d_{cc}(g,h) = \inf\{L(\gamma) \mid \gamma \text{ horizontal curve between } g \text{ et } h\}$

with
$$L(\gamma) = \int_{I} \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{\mathcal{H}_{\gamma(t)}}} dt = \int_{I} ||\dot{\gamma}_{\mathbb{R}^{2}}(t)||_{\mathbb{R}^{2}} dt$$

• On a en particulier : $d_{cc}(0,(x,y,z))^2 \sim ||(x,y)||^2 + |z|$

< □ > < □ > < □ > < □ > < □ >

Definition of the Brownian motion on the Heisenberg group

Definition

- We define the Sub-Laplacian operator by $L = \frac{1}{2}(X^2 + Y^2)$;
- The Brownian motion on a subRiemannian manifold is defined as the diffusion process of infinitesimal generator L.
- The Brownian motion starting at $(x_1,x_2,z)\in\mathbb{H}$ is given by :

$$\mathbb{B}_t := \left(B_t^1, B_t^2, z + \frac{1}{2}\left(\int_0^t B_s^1 dB_s^2 - \int_0^t B_s^2 dB_s^1\right)\right)$$

with $(B_t^1, B_t^2)_t$ a Brownian motion on \mathbb{R}^2 starting at (x_1, x_2) .

- Taking polar coordinates (φ_t, θ_t) for (B_t^1, B_t^2) , \mathbb{B}_t satisfies : $\begin{cases} d\varphi_t = dC_t^1 + \frac{1}{\varphi_t} dt \\ d\theta_t = \frac{1}{\varphi_t} dC_t^2 \\ dz_t = \frac{\varphi_t}{2} dC_t^2 \end{cases}$ with
 - C_t^1 , C_t^2 two real independent Brownian motions.

ヘロト ヘロト ヘヨト ヘヨト

Generalisation to $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$

We consider two other subRiemannian manifolds that we will generally denote G and we associate a real k to each :

- $SU(2, \mathbb{C}) = \{A \in M_2(\mathbb{C}) \mid A \text{ unitary and } det(A) = 1\}, \ k = 1;$
- $SL(2, \mathbb{R}) = \{A \in M_2(\mathbb{R}) | det(A) = 1\}, k = -1.$

Using cylindrical coordinates, the Brownian motion on G satifies :

$$\begin{cases} d\varphi_t = dB_t^1 + \sqrt{k} \cot(\sqrt{k}\varphi_t) dt \\ d\theta_t = \frac{\sqrt{k}}{\sin(\sqrt{k}\varphi_t)} dB_t^2 & \text{with } B_t^1, B_t^2 \text{ two real independent Brownian motions.} \\ dz_t = \frac{1}{\sqrt{k}} \tan(\frac{\sqrt{k}\varphi_t}{2}) dB_t^2 & \end{cases}$$

Geometrical interpretation :

- $X_t = (\varphi_t, \theta_t)$ is a Brownian motion in spherical/polar coordinates on a Riemannian manifold M of curvature k;
- z_t is the area swept by $(X_s)_{s < t}$ on M relative to the chosen pole modulo 4π .

<ロ> <四> <四> <四> <三</p>

Example of couplings

Definition

Constructing a coupling of Brownian motions starting at (x, x') consists in studying the joint law of $(\mathbb{B}_t, \mathbb{B}'_t)_t$ with \mathbb{B}_t a Brownian motion starting at x and \mathbb{B}'_t a Brownian motion starting at x'.

Example of couplings

Definition

Constructing a coupling of Brownian motions starting at (x, x') consists in studying the joint law of $(\mathbb{B}_t, \mathbb{B}'_t)_t$ with \mathbb{B}_t a Brownian motion starting at x and \mathbb{B}'_t a Brownian motion starting at x'.

On G, we need to couple :

$$\begin{cases} d\varphi_t = dB_t^1 + \sqrt{k} \operatorname{cotan}(\sqrt{k}\varphi_t) dt \\ d\theta_t = \frac{\sqrt{k}}{\sin(\sqrt{k}\varphi_t)} dB_t^2 \\ dz_t = \frac{1}{\sqrt{k}} \tan(\frac{\sqrt{k}\varphi_t}{2}) dB_t^2 \end{cases} \quad \text{and} \begin{cases} d\varphi_t' = dB_t'^1 + \sqrt{k} \operatorname{cotan}(\sqrt{k}\varphi_t') dt \\ d\theta_t' = \frac{\sqrt{k}}{\sin(\sqrt{k}\varphi_t)} dB_t'^2 \\ dz_t' = \frac{1}{\sqrt{k}} \tan(\frac{\sqrt{k}\varphi_t}{2}) dB_t'^2 \end{cases}$$

Example of couplings

Definition

Constructing a coupling of Brownian motions starting at (x, x') consists in studying the joint law of $(\mathbb{B}_t, \mathbb{B}'_t)_t$ with \mathbb{B}_t a Brownian motion starting at x and \mathbb{B}'_t a Brownian motion starting at x'.

On G, we need to couple :

$$\begin{cases} d\varphi_t = dB_t^1 + \sqrt{k} \operatorname{cotan}(\sqrt{k}\varphi_t) dt \\ d\theta_t = \frac{\sqrt{k}}{\sin(\sqrt{k}\varphi_t)} dB_t^2 \\ dz_t = \frac{1}{\sqrt{k}} \tan(\frac{\sqrt{k}\varphi_t}{2}) dB_t^2 \end{cases} \quad \text{and} \quad \begin{cases} d\varphi_t' = dB_t'^1 + \sqrt{k} \operatorname{cotan}(\sqrt{k}\varphi_t') dt \\ d\theta_t' = \frac{\sqrt{k}}{\sin(\sqrt{k}\varphi_t)} dB_t'^2 \\ dz_t' = \frac{1}{\sqrt{k}} \tan(\frac{\sqrt{k}\varphi_t}{2}) dB_t'^2 \end{cases}$$

Example

 $B_t^1 = -B_t^{1'}$ and $B_t^2 = B_t^{2'}$.

Remarque

For k = 1, if $\varphi_0 = \pi - \varphi'_0$ and $\theta_0 = \theta'_0$ we get $\varphi_t = \pi - \varphi'_t$ for all $t \ge 0$. We obtain a reflection coupling.

Successful couplings

Definition

We considere a coupling $(\mathbb{B}_t, \mathbb{B}'_t)$ starting at (x, x'). We define $\tau := \inf\{t > 0 | \mathbb{B}_t = \mathbb{B}'_t\}$. If $\tau < +\infty$ a.s., our coupling is called successful.

Motivations for successful couplings :

• To obtain estimations of the total variation distance :

Aldous inequality : $d_{TV}(\mathcal{L}(\mathbb{B}_t), \mathcal{L}(\mathbb{B}'_t))) \leq \mathbb{P}(t < \tau)$

Successful couplings

Definition

We considere a coupling $(\mathbb{B}_t, \mathbb{B}'_t)$ starting at (x, x'). We define $\tau := \inf\{t > 0 | \mathbb{B}_t = \mathbb{B}'_t\}$. If $\tau < +\infty$ a.s., our coupling is called successful.

Motivations for successful couplings :

• To obtain estimations of the total variation distance :

Aldous inequality : $d_{TV}(\mathcal{L}(\mathbb{B}_t), \mathcal{L}(\mathbb{B}'_t))) \leq \mathbb{P}(t < \tau)$

• To obtain heat semi group inequalities : for a bounded lipschitz function f,

 $|P_t f(\mathbb{B}_x) - P_t f(x')| \leq 2||f||_{\infty} \mathbb{P}(t < \tau)$

Successful couplings

Definition

We considere a coupling $(\mathbb{B}_t, \mathbb{B}'_t)$ starting at (x, x'). We define $\tau := \inf\{t > 0 | \mathbb{B}_t = \mathbb{B}'_t\}$. If $\tau < +\infty$ a.s., our coupling is called successful.

Motivations for successful couplings :

• To obtain estimations of the total variation distance :

Aldous inequality : $d_{TV}(\mathcal{L}(\mathbb{B}_t), \mathcal{L}(\mathbb{B}'_t))) \leq \mathbb{P}(t < \tau)$

• To obtain heat semi group inequalities : for a bounded lipschitz function f,

$$|P_t f(\mathbb{B}_x) - P_t f(x')| \le 2||f||_{\infty} \mathbb{P}(t < \tau)$$

• To study harmonic functions :

Theorem (Wang, 2002)

On a Riemannian manifold with Ricci curvature bounded below, there exists a successful coupling of Brownian motions if and only if all harmonic bounded function are constant.

< □ > < 同 > < 回 > < 回 >

Successful couplings

Definition

We considere a coupling $(\mathbb{B}_t, \mathbb{B}'_t)$ starting at (x, x'). We define $\tau := \inf\{t > 0 | \mathbb{B}_t = \mathbb{B}'_t\}$. If $\tau < +\infty$ a.s., our coupling is called successful.

Motivations for successful couplings :

• To obtain estimations of the total variation distance :

Aldous inequality : $d_{TV}(\mathcal{L}(\mathbb{B}_t), \mathcal{L}(\mathbb{B}'_t))) \leq \mathbb{P}(t < \tau)$

• To obtain heat semi group inequalities : for a bounded lipschitz function f,

$$|P_t f(\mathbb{B}_x) - P_t f(x')| \leq 2||f||_{\infty} \mathbb{P}(t < \tau)$$

• To study harmonic functions :

Theorem (Wang, 2002)

On a Riemannian manifold with Ricci curvature bounded below, there exists a successful coupling of Brownian motions if and only if all harmonic bounded function are constant.

Example

There is no successful coupling on the hyperbolic plane.

Problem

Can we define a successful coupling $((X_t, z_t), (X'_t, z'_t))$ on G?

- On H ? Yes : Kendall (2010), co-adapted coupling; Banerjee, Gordina, Mariano (2017) non co-adapted coupling;
- On SU(2, C)? Yes : B. (2023), co-adapted coupling and non codapted coupling
- On $SL(2, \mathbb{R})$? No : there is no successful coupling on the hyperbolic space.

Remarque

Co-adapted couplings are easy to simulate but, in general, for these couplings, $\mathbb{P}(t < \tau)$ is not optimal and difficult to compute.

Coupling rates on \mathbb{H} under the hypothesis $X_0 = X'_0$; for t large enough, we have :

Kendall co-adapted coupling :

 $\mathbb{P}(t < \tau) \geq \frac{C}{\sqrt{t}}$

Banerjee et. al. non co-adapted coupling :

$$\mathbb{P}(t < \tau) \leq \frac{C'}{t})$$

イロト イヨト イヨト

Brownian bridges coupling

Theorem

Let suppose $X_0 = X'_0$. There exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ and There exists $c_1, c_2 > 0$ such that : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$ for t large enough.

Elements of proof

This proof is inspired by the coupling on \mathbb{H} from Banerjee et. al. We choose T > 0. We first define a coupling on [0, T]:

• $B^1_t = B^{1\,\prime}_t \Rightarrow \varphi_t = \varphi'_t$ for all t ;

Brownian bridges coupling

Theorem

Let suppose $X_0 = X'_0$. There exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ and There exists $c_1, c_2 > 0$ such that : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$ for t large enough.

Elements of proof

This proof is inspired by the coupling on \mathbb{H} from Banerjee et. al. We choose T > 0. We first define a coupling on [0, T]:

•
$$B_t^1 = B_t^{1'} \Rightarrow \varphi_t = \varphi'_t$$
 for all t ;
• $\theta_t = \theta_0 + C_{\sigma(t)}, \ \theta'_t = \theta_0 + C'_{\sigma(t)}$ with C and C' two real Brownian motions and $\sigma(t) = \int_0^t \frac{k}{\sin^2(\sqrt{k\varphi_s})} ds$;

Brownian bridges coupling

Theorem

Let suppose $X_0 = X'_0$. There exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ and There exists $c_1, c_2 > 0$ such that : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$ for t large enough.

Elements of proof

This proof is inspired by the coupling on \mathbb{H} from Banerjee et. al. We choose T > 0. We first define a coupling on [0, T]:

• $B_t^1 = B_t^{1'} \Rightarrow \varphi_t = \varphi'_t$ for all t; • $\theta_t = \theta_0 + C_{\sigma(t)}, \theta'_t = \theta_0 + C'_{\sigma(t)}$ with C and C' two real Brownian motions and $\sigma(t) = \int_0^t \frac{k}{\sin^2(\sqrt{k\varphi_s})} ds$; • $\begin{cases} \theta_t = B_{\sigma(t)}^{br} + \frac{\sigma(t)}{\sigma(T)} G\\ \theta'_t = B_{\sigma(t)}^{br'} + \frac{\sigma(t)}{\sigma(T)} G\\ \theta'_t = \sigma(t) + \frac{\sigma(t)}{\sigma(T)} G \end{cases}$ with B^{br} and $B^{br'}$ two Brownian bridges on $[0, \sigma(T)]$ and $G \sim \mathcal{N}(0, \sigma(T))$, independent to the Brownian bridges.

Remarque

We get $X_T = X'_T$.

Brownian bridges coupling

Theorem

There exists $c_1, c_2 > 0$ such that, if $X_0 = X'_0$, there exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ satisfying : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$.

• Decomposition of the Brownian bridges using Karhunen-Loève formula :

$$B_{\sigma(t)}^{br} = \sqrt{\sigma(T)} \sum_{j \ge 1} Z_j \frac{\sqrt{2}}{j\pi} \sin(\frac{j\pi\sigma(t)}{\sigma(T)}) \text{ and } B_{\sigma(t)}^{br'} = \sqrt{\sigma(T)} \sum_{j \ge 1} Z'_j \frac{\sqrt{2}}{j\pi} \sin(\frac{j\pi\sigma(t)}{\sigma(T)})$$

with $(Z_j)_j$ (resp. $(Z'_j)_j$) a sequence of independent standard Gaussian variables, independent of B^1 .

< □ > < □ > < □ > < □ > < □ >

Brownian bridges coupling

Theorem

There exists $c_1, c_2 > 0$ such that, if $X_0 = X'_0$, there exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ satisfying : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$.

• Decomposition of the Brownian bridges using Karhunen-Loève formula :

$$B_{\sigma(t)}^{br} = \sqrt{\sigma(T)} \sum_{j \ge 1} Z_j \frac{\sqrt{2}}{j\pi} \sin(\frac{j\pi\sigma(t)}{\sigma(T)}) \text{ and } B_{\sigma(t)}^{br'} = \sqrt{\sigma(T)} \sum_{j \ge 1} Z'_j \frac{\sqrt{2}}{j\pi} \sin(\frac{j\pi\sigma(t)}{\sigma(T)})$$

with $(Z_j)_j$ (resp. $(Z'_j)_j$) a sequence of independent standard Gaussian variables, independent of B^1 .

• We choose $Z_j = Z'_j$ except for j = 1. We obtain : $\theta_t - \theta'_t = (Z_1 - Z'_1) \frac{\sqrt{2\sigma(T)}}{\pi} \sin(\frac{\pi\sigma(t)}{\sigma(T)})$.

Brownian bridges coupling

Theorem

There exists $c_1, c_2 > 0$ such that, if $X_0 = X'_0$, there exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ satisfying : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$.

• We have :

$$z_T - z'_T = z_0 - z'_0 + \mathcal{K}(T) \frac{z_1 - Z'_1}{2} \text{ with } \mathcal{K}(T) = 2\sqrt{\frac{2}{\sigma(T)}} \int_0^T \frac{1}{1 + \cos(\varphi_s)} \cos(\frac{\pi\sigma(s)}{\sigma(T)}) ds.$$

We want : $\mathbb{P}\left(z_T - z'_T \equiv 0(4\pi)\right) \neq 0.$

< □ > < □ > < □ > < □ > < □ >

Brownian bridges coupling

Theorem

There exists $c_1, c_2 > 0$ such that, if $X_0 = X'_0$, there exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ satisfying : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$.

• We have :

$$\begin{aligned} z_T - z'_T &= z_0 - z'_0 + \mathcal{K}(T) \frac{Z_1 - Z'_1}{2} \text{ with } \mathcal{K}(T) = 2\sqrt{\frac{2}{\sigma(T)}} \int_0^T \frac{1}{1 + \cos(\varphi_s)} \cos(\frac{\pi\sigma(s)}{\sigma(T)}) ds. \end{aligned}$$

We want : $\mathbb{P}\left(z_T - z'_T \equiv 0(4\pi)\right) \neq 0.$

• We take $(W_t)_t$ a Brownian motion independent of B^1 , G and $(Z_j)_{j\geq 2}$. We define $\omega = \inf\{t|W_t \notin] - \frac{z_0 - z'_0}{K(T)}, \frac{-(z_0 - z'_0) + 4\pi}{K(T)}[\}. \text{ Then we define } W'_t := \begin{cases} -W_t & \text{if } t \leq \omega \\ W_t - 2W_\omega & \text{else} \end{cases}.$ We choose : $Z_1 := -W_1 \sim \mathcal{N}(0, 1)$ and $Z'_1 := W'_1 \sim \mathcal{N}(0, 1)$.

Brownian bridges coupling

Theorem

There exists $c_1, c_2 > 0$ such that, if $X_0 = X'_0$, there exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ satisfying : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$.

• We have :

$$z_T - z'_T = z_0 - z'_0 + \mathcal{K}(T) \frac{z_1 - Z'_1}{2} \text{ with } \mathcal{K}(T) = 2\sqrt{\frac{2}{\sigma(T)}} \int_0^T \frac{1}{1 + \cos(\varphi_s)} \cos(\frac{\pi\sigma(s)}{\sigma(T)}) ds.$$

We want : $\mathbb{P}(z_T - z'_T \equiv 0(4\pi)) \neq 0.$

• We take $(W_t)_t$ a Brownian motion independent of B^1 , G and $(Z_j)_{j\geq 2}$. We define $\omega = \inf\{t|W_t \notin] - \frac{z_0 - z'_0}{K(T)}, \frac{-(z_0 - z'_0) + 4\pi}{K(T)}[\}$. Then we define $W'_t := \begin{cases} -W_t & \text{if } t \leq \omega \\ W_t - 2W_\omega & \text{else} \end{cases}$. We choose : $Z_1 := -W_1 \sim \mathcal{N}(0, 1)$ and $Z'_1 := W'_1 \sim \mathcal{N}(0, 1)$. With this coupling strategy we have two cases :

• If
$$\omega \leq 1$$
, then $K(T) \frac{Z_1 - Z'_1}{2} = K(T)W_{\omega} \equiv -(z_0 - z'_0)(4\pi)$.
• If $\omega > 1$, then $K(T) \frac{Z_1 - Z'_1}{2} = K(T)W_1 \not\equiv -(z_0 - z'_0) \mod (4\pi)$.

ヘロト ヘロト ヘヨト ヘヨト

Brownian bridges coupling

Theorem

There exists $c_1, c_2 > 0$ such that, if $X_0 = X'_0$, there exists a non co-adapted coupling on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$ satisfying : $\mathbb{P}(t < \tau) \leq c_1 e^{-c_2 t}$.

• We have :

$$z_T - z'_T = z_0 - z'_0 + \mathcal{K}(T) \frac{z_1 - Z'_1}{2} \text{ with } \mathcal{K}(T) = 2\sqrt{\frac{2}{\sigma(T)}} \int_0^T \frac{1}{1 + \cos(\varphi_s)} \cos(\frac{\pi\sigma(s)}{\sigma(T)}) ds.$$

We want : $\mathbb{P}(z_T - z'_T \equiv 0(4\pi)) \neq 0.$

• We take $(W_t)_t$ a Brownian motion independent of B^1 , G and $(Z_j)_{j\geq 2}$. We define $\omega = \inf\{t|W_t \notin] - \frac{z_0 - z'_0}{K(T)}, \frac{-(z_0 - z'_0) + 4\pi}{K(T)}[\}. \text{ Then we define } W'_t := \begin{cases} -W_t & \text{if } t \leq \omega \\ W_t - 2W_\omega & \text{else} \end{cases}.$ We choose : $Z_1 := -W_1 \sim \mathcal{N}(0, 1)$ and $Z'_1 := W'_1 \sim \mathcal{N}(0, 1)$. With this coupling strategy we

have two cases :

• If
$$\omega \leq 1$$
, then $K(T)\frac{Z_1-Z'_1}{2} = K(T)W_{\omega} \equiv -(z_0 - z'_0)(4\pi)$.
• If $\omega > 1$, then $K(T)\frac{Z_1-Z'_1}{2} = K(T)W_1 \not\equiv -(z_0 - z'_0) \mod (4\pi)$

We reproduce this coupling until we get ω > 1.

イロン イヨン イヨン イヨン 三日

Some references :

- Coupling in the Heisenberg group and its applications to gradient estimates, S. Banerjee, M. Gordina, P Mariano, 2017
- The subelliptic heat kernel on SU(2) : representations, asymptotics and gradient bounds, F.Baudoin, M.Bonnefont, 2009
- Couplings of Brownian motions on $SU(2, \mathbb{C})$ and $SL(2, \mathbb{R})$, M.Bénéfice, 2023, Preprint
- Coupling time distribution asymptotics for some couplings of the Levy stochastic area, W. S. Kendall, 2010
- Liouville theorem and coupling on negatively curved Riemannian manifolds, F.-Y. Wang, 2002

Thank you for your attention.

イロト イヨト イヨト