Non co-adapted Couplings of Brownian motion in subRiemannian manifolds

Journées de Probabilités 2023

BENEFICE Magalie

Université de Bordeaux
Phd student -IMB

22nd June 2023

Phd supervisors : Marc Arnaudon, Michel Bonnefont

Table of contents

(1) Brownian motion on subRiemannian manifolds
(2) Successful couplings of Brownian motion

3 Successful coupling on subRiemannian manifolds

Brownian motion on subRiemannian manifolds

SubRiemannian structure of the Heisenberg group

Example (The Heisenberg group)

- $\mathbb{H}=\left(\mathbb{R}^{3}, \star\right)$ such that for $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{H}$,

$$
(x, y, z) \star\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-y x^{\prime}\right)\right)
$$

- Horizontal space : $\mathcal{H}_{(x, y, z)}=\operatorname{Vect}\left(X_{(x, y, z)}, Y_{(x, y, z)}\right)$ with $X_{(x, y, z)}=\partial_{x}-\frac{y}{2} \partial_{z}$ and $Y_{(x, y, z)}=\partial_{y}+\frac{x}{2} \partial_{z}$
- Horizontal curve : $\gamma: I \rightarrow \mathbb{H}$ smooth such that, $\dot{\gamma}(t) \in \mathcal{H}_{\gamma(t)} \forall t \in I$
- Carnot-Carathéodory distance between g and $h \in \mathbb{H}$:

$$
\begin{aligned}
& d_{c c}(g, h)=\inf \{L(\gamma) \mid \gamma \text { horizontal curve between } g \text { et } h\} \\
& \text { with } L(\gamma)=\int_{I} \sqrt{\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle_{\mathcal{H}_{\gamma(t)}}} d t=\int_{I}\left\|\dot{\gamma}_{\mathbb{R}^{2}}(t)\right\|_{\mathbb{R}^{2}} d t
\end{aligned}
$$

- On a en particulier : $d_{c c}(0,(x, y, z))^{2} \sim\|(x, y)\|^{2}+|z|$

Brownian motion on subRiemannian manifolds

Definition of the Brownian motion on the Heisenberg group

Definition

- We define the Sub-Laplacian operator by $L=\frac{1}{2}\left(X^{2}+Y^{2}\right)$;
- The Brownian motion on a subRiemannian manifold is defined as the diffusion process of infinitesimal generator L.
- The Brownian motion starting at $\left(x_{1}, x_{2}, z\right) \in \mathbb{H}$ is given by :

$$
\mathbb{B}_{t}:=\left(B_{t}^{1}, B_{t}^{2}, z+\frac{1}{2}\left(\int_{0}^{t} B_{s}^{1} d B_{s}^{2}-\int_{0}^{t} B_{s}^{2} d B_{s}^{1}\right)\right)
$$

with $\left(B_{t}^{1}, B_{t}^{2}\right)_{t}$ a Brownian motion on \mathbb{R}^{2} starting at $\left(x_{1}, x_{2}\right)$.

- Taking polar coordinates $\left(\varphi_{t}, \theta_{t}\right)$ for $\left(B_{t}^{1}, B_{t}^{2}\right), \mathbb{B}_{t}$ satisfies : $\left\{\begin{array}{l}d \varphi_{t}=d C_{t}^{1}+\frac{1}{\varphi_{t}} d t \\ d \theta_{t}=\frac{1}{\varphi_{t}} d C_{t}^{2} \\ d z_{t}=\frac{\varphi_{t}}{2} d C_{t}^{2}\end{array}\right.$ with C_{t}^{1}, C_{t}^{2} two real independent Brownian motions.

Brownian motion on subRiemannian manifolds

Generalisation to $S U(2, \mathbb{C})$ and $S L(2, \mathbb{R})$

We consider two other subRiemannian manifolds that we will generally denote G and we associate a real k to each :

- $S U(2, \mathbb{C})=\left\{A \in M_{2}(\mathbb{C}) \mid A\right.$ unitary and $\left.\operatorname{det}(A)=1\right\}, k=1$;
- $S L(2, \mathbb{R})=\left\{A \in M_{2}(\mathbb{R}) \mid \operatorname{det}(A)=1\right\}, k=-1$.

Using cylindrical coordinates, the Brownian motion on G satifies :
$\left\{\begin{array}{l}d \varphi_{t}=d B_{t}^{1}+\sqrt{k} \operatorname{cotan}\left(\sqrt{k} \varphi_{t}\right) d t \\ d \theta_{t}=\frac{\sqrt{k}}{\sin \left(\sqrt{k} \varphi_{t} t\right.} d B_{t}^{2} \\ d z_{t}=\frac{1}{\sqrt{k}} \tan \left(\frac{\sqrt{k} \varphi_{t}}{2}\right) d B_{t}^{2}\end{array}\right.$ with B_{t}^{1}, B_{t}^{2} two real independent Brownian motions.

Geometrical interpretation :

- $X_{t}=\left(\varphi_{t}, \theta_{t}\right)$ is a Brownian motion in spherical/polar coordinates on a Riemannian manifold M of curvature k;
- z_{t} is the area swept by $\left(X_{s}\right)_{s \leq t}$ on M relative to the chosen pole modulo 4π.

Successful couplings of Brownian motion

Example of couplings

Definition
Constructing a coupling of Brownian motions starting at (x, x^{\prime}) consists in studying the joint law of $\left(\mathbb{B}_{t}, \mathbb{B}_{t}^{\prime}\right)_{t}$ with \mathbb{B}_{t} a Brownian motion starting at x and \mathbb{B}_{t}^{\prime} a Brownian motion starting at x^{\prime}.

Successful couplings of Brownian motion

Example of couplings

Definition
Constructing a coupling of Brownian motions starting at (x, x^{\prime}) consists in studying the joint law of $\left(\mathbb{B}_{t}, \mathbb{B}_{t}^{\prime}\right)_{t}$ with \mathbb{B}_{t} a Brownian motion starting at x and \mathbb{B}_{t}^{\prime} a Brownian motion starting at x^{\prime}.

On G, we need to couple :

$$
\left\{\begin{array}{l}
d \varphi_{t}=d B_{t}^{1}+\sqrt{k} \operatorname{cotan}\left(\sqrt{k} \varphi_{t}\right) d t \\
d \theta_{t}=\frac{\sqrt{k}}{\sin \left(\sqrt{k} \varphi_{t}\right)} d B_{t}^{2} \\
d z_{t}=\frac{1}{\sqrt{k}} \tan \left(\frac{\sqrt{k} \varphi_{t}}{2}\right) d B_{t}^{2}
\end{array}\right.
$$

$$
\text { and }\left\{\begin{array}{l}
d \varphi_{t}^{\prime}=d B_{t}^{\prime 1}+\sqrt{k} \operatorname{cotan}\left(\sqrt{k} \varphi_{t}^{\prime}\right) d t \\
d \theta_{t}^{\prime}=\frac{\sqrt{k}}{\sin \left(\sqrt{k} \varphi_{t}\right)} d B_{t}^{\prime 2} \\
d z_{t}^{\prime}=\frac{1}{\sqrt{k}} \tan \left(\frac{\sqrt{k} \varphi_{t}}{2}\right) d B_{t}^{\prime 2}
\end{array}\right.
$$

Successful couplings of Brownian motion

Example of couplings

Definition
Constructing a coupling of Brownian motions starting at (x, x^{\prime}) consists in studying the joint law of $\left(\mathbb{B}_{t}, \mathbb{B}_{t}^{\prime}\right)_{t}$ with \mathbb{B}_{t} a Brownian motion starting at x and \mathbb{B}_{t}^{\prime} a Brownian motion starting at x^{\prime}.

On G, we need to couple :

$$
\left\{\begin{aligned}
d \varphi_{t} & =d B_{t}^{1}+\sqrt{k} \operatorname{cotan}\left(\sqrt{k} \varphi_{t}\right) d t \\
d \theta_{t} & =\frac{\sqrt{k}}{\sin \left(\sqrt{k} \varphi_{t}\right)} d B_{t}^{2} \\
d z_{t} & =\frac{1}{\sqrt{k}} \tan \left(\frac{\sqrt{k} \varphi_{t}}{2}\right) d B_{t}^{2}
\end{aligned}\right.
$$

$$
\text { and }\left\{\begin{array}{l}
d \varphi_{t}^{\prime}=d B_{t}^{\prime 1}+\sqrt{k} \operatorname{cotan}\left(\sqrt{k} \varphi_{t}^{\prime}\right) d t \\
d \theta_{t}^{\prime}=\frac{\sqrt{k}}{\sin \left(\sqrt{k} \varphi_{t}\right)} d B_{t}^{\prime 2} \\
d z_{t}^{\prime}=\frac{1}{\sqrt{k}} \tan \left(\frac{\sqrt{k} \varphi_{t}}{2}\right) d B_{t}^{\prime 2}
\end{array}\right.
$$

Example
$B_{t}^{1}=-B_{t}^{1^{\prime}}$ and $B_{t}^{2}=B_{t}^{2 \prime}$.

Remarque

For $k=1$, if $\varphi_{0}=\pi-\varphi_{0}^{\prime}$ and $\theta_{0}=\theta_{0}^{\prime}$ we get $\varphi_{t}=\pi-\varphi_{t}^{\prime}$ for all $t \geq 0$. We obtain a reflection coupling.

Successful couplings of Brownian motion

Successful couplings

Definition
We considere a coupling $\left(\mathbb{B}_{t}, \mathbb{B}_{t}^{\prime}\right)$ starting at $\left(x, x^{\prime}\right)$. We define $\tau:=\inf \left\{t>0 \mid \mathbb{B}_{t}=\mathbb{B}_{t}^{\prime}\right\}$. If $\tau<+\infty$ a.s., our coupling is called successful.

Motivations for successful couplings :

- To obtain estimations of the total variation distance :

Aldous inequality : $\left.d_{T V}\left(\mathcal{L}\left(\mathbb{B}_{t}\right), \mathcal{L}\left(\mathbb{B}_{t}^{\prime}\right)\right)\right) \leq \mathbb{P}(t<\tau)$

Successful couplings of Brownian motion

Successful couplings

Definition
We considere a coupling $\left(\mathbb{B}_{t}, \mathbb{B}_{t}^{\prime}\right)$ starting at $\left(x, x^{\prime}\right)$. We define $\tau:=\inf \left\{t>0 \mid \mathbb{B}_{t}=\mathbb{B}_{t}^{\prime}\right\}$. If $\tau<+\infty$ a.s., our coupling is called successful.

Motivations for successful couplings :

- To obtain estimations of the total variation distance :

Aldous inequality : $\left.d_{T V}\left(\mathcal{L}\left(\mathbb{B}_{t}\right), \mathcal{L}\left(\mathbb{B}_{t}^{\prime}\right)\right)\right) \leq \mathbb{P}(t<\tau)$

- To obtain heat semi group inequalities: for a bounded lipschitz function f,

$$
\left|P_{t} f\left(\mathbb{B}_{x}\right)-P_{t} f\left(x^{\prime}\right)\right| \leq 2\|f\|_{\infty} \mathbb{P}(t<\tau)
$$

Successful couplings of Brownian motion

Successful couplings

Definition

We considere a coupling $\left(\mathbb{B}_{t}, \mathbb{B}_{t}^{\prime}\right)$ starting at $\left(x, x^{\prime}\right)$. We define $\tau:=\inf \left\{t>0 \mid \mathbb{B}_{t}=\mathbb{B}_{t}^{\prime}\right\}$. If $\tau<+\infty$ a.s., our coupling is called successful.

Motivations for successful couplings :

- To obtain estimations of the total variation distance :

Aldous inequality : $\left.d_{T V}\left(\mathcal{L}\left(\mathbb{B}_{t}\right), \mathcal{L}\left(\mathbb{B}_{t}^{\prime}\right)\right)\right) \leq \mathbb{P}(t<\tau)$

- To obtain heat semi group inequalities : for a bounded lipschitz function f,

$$
\left|P_{t} f\left(\mathbb{B}_{x}\right)-P_{t} f\left(x^{\prime}\right)\right| \leq 2\|f\|_{\infty} \mathbb{P}(t<\tau)
$$

- To study harmonic functions :

Theorem (Wang, 2002)
On a Riemannian manifold with Ricci curvature bounded below, there exists a successful coupling of Brownian motions if and only if all harmonic bounded function are constant.

Successful couplings of Brownian motion

Successful couplings

Definition

We considere a coupling $\left(\mathbb{B}_{t}, \mathbb{B}_{t}^{\prime}\right)$ starting at $\left(x, x^{\prime}\right)$. We define $\tau:=\inf \left\{t>0 \mid \mathbb{B}_{t}=\mathbb{B}_{t}^{\prime}\right\}$. If $\tau<+\infty$ a.s., our coupling is called successful.

Motivations for successful couplings :

- To obtain estimations of the total variation distance :

Aldous inequality : $\left.d_{T V}\left(\mathcal{L}\left(\mathbb{B}_{t}\right), \mathcal{L}\left(\mathbb{B}_{t}^{\prime}\right)\right)\right) \leq \mathbb{P}(t<\tau)$

- To obtain heat semi group inequalities : for a bounded lipschitz function f,

$$
\left|P_{t} f\left(\mathbb{B}_{x}\right)-P_{t} f\left(x^{\prime}\right)\right| \leq 2\|f\|_{\infty} \mathbb{P}(t<\tau)
$$

- To study harmonic functions :

Theorem (Wang, 2002)
On a Riemannian manifold with Ricci curvature bounded below, there exists a successful coupling of Brownian motions if and only if all harmonic bounded function are constant.

Example
There is no successful coupling on the hyperbolic plane.

Successful coupling on subRiemannian manifolds

Problem
Can we define a successful coupling $\left(\left(X_{t}, z_{t}\right),\left(X_{t}^{\prime}, z_{t}^{\prime}\right)\right)$ on G ?

- On H ? Yes : Kendall (2010), co-adapted coupling ; Banerjee, Gordina, Mariano (2017) non co-adapted coupling ;
- On $S U(2, \mathbb{C})$? Yes : B. (2023), co-adapted coupling and non codapted coupling
- On $S L(2, \mathbb{R})$? No : there is no successful coupling on the hyperbolic space.

Remarque

Co-adapted couplings are easy to simulate but, in general, for these couplings, $\mathbb{P}(t<\tau)$ is not optimal and difficult to compute.
Coupling rates on \mathbb{H} under the hypothesis $X_{0}=X_{0}^{\prime}$; for t large enough, we have :

Kendall co-adapted coupling :

$$
\mathbb{P}(t<\tau) \geq \frac{C}{\sqrt{t}}
$$

Banerjee et. al. non co-adapted coupling :

$$
\left.\mathbb{P}(t<\tau) \leq \frac{C^{\prime}}{t}\right)
$$

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

Let suppose $X_{0}=X_{0}^{\prime}$. There exists a non co-adapted coupling on $\operatorname{SU}(2, \mathbb{C})$ and $\operatorname{SL}(2, \mathbb{R})$ and There exists $c_{1}, c_{2}>0$ such that : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$ for t large enough.

Elements of proof

This proof is inspired by the coupling on \mathbb{H} from Banerjee et. al. We choose $T>0$. We first define a coupling on $[0, T]$:

- $B_{t}^{1}=B_{t}^{1^{\prime}} \Rightarrow \varphi_{t}=\varphi_{t}^{\prime}$ for all t;

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

Let suppose $X_{0}=X_{0}^{\prime}$. There exists a non co-adapted coupling on $\operatorname{SU}(2, \mathbb{C})$ and $\operatorname{SL}(2, \mathbb{R})$ and There exists $c_{1}, c_{2}>0$ such that : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$ for t large enough.

Elements of proof

This proof is inspired by the coupling on \mathbb{H} from Banerjee et. al. We choose $T>0$. We first define a coupling on $[0, T]$:

- $B_{t}^{1}=B_{t}^{1^{\prime}} \Rightarrow \varphi_{t}=\varphi_{t}^{\prime}$ for all t;
- $\theta_{t}=\theta_{0}+C_{\sigma(t)}, \theta_{t}^{\prime}=\theta_{0}+C_{\sigma(t)}^{\prime}$ with C and C^{\prime} two real Brownian motions and $\sigma(t)=\int_{0}^{t} \frac{k}{\sin ^{2}\left(\sqrt{k} \varphi_{s}\right)} d s ;$

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

Let suppose $X_{0}=X_{0}^{\prime}$. There exists a non co-adapted coupling on $S U(2, \mathbb{C})$ and $S L(2, \mathbb{R})$ and There exists $c_{1}, c_{2}>0$ such that : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$ for t large enough.

Elements of proof

This proof is inspired by the coupling on \mathbb{H} from Banerjee et. al. We choose $T>0$. We first define a coupling on $[0, T]$:

- $B_{t}^{1}=B_{t}^{1 \prime} \Rightarrow \varphi_{t}=\varphi_{t}^{\prime}$ for all t;
- $\theta_{t}=\theta_{0}+C_{\sigma(t)}, \theta_{t}^{\prime}=\theta_{0}+C_{\sigma(t)}^{\prime}$ with C and C^{\prime} two real Brownian motions and $\sigma(t)=\int_{0}^{t} \frac{k}{\sin ^{2}\left(\sqrt{k} \varphi_{s}\right)} d s$;
- $\left\{\begin{array}{l}\theta_{t}=B_{\sigma(t)}^{b r}+\frac{\sigma(t)}{\sigma(T)} G \\ \theta_{t}^{\prime}=B_{\sigma(t)}^{b r^{\prime}}+\frac{\sigma(t)}{\sigma(T)} G\end{array} \quad\right.$ with $B^{b r}$ and $B^{b r^{\prime}}$ two Brownian bridges on $[0, \sigma(T)]$ and $G \sim \mathcal{N}(0, \sigma(T))$, independent to the Brownian bridges.

Remarque

We get $X_{T}=X_{T}^{\prime}$.

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

There exists $c_{1}, c_{2}>0$ such that, if $X_{0}=X_{0}^{\prime}$, there exists a non co-adapted coupling on $\operatorname{SU}(2, \mathbb{C})$ and $S L(2, \mathbb{R})$ satisfying : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$.

- Decomposition of the Brownian bridges using Karhunen-Loève formula :

$$
B_{\sigma(t)}^{b r}=\sqrt{\sigma(T)} \sum_{j \geq 1} Z_{j} \frac{\sqrt{2}}{j \pi} \sin \left(\frac{j \pi \sigma(t)}{\sigma(T)}\right) \text { and } B_{\sigma(t)}^{b r^{\prime}}=\sqrt{\sigma(T)} \sum_{j \geq 1} Z_{j}^{\prime} \frac{\sqrt{2}}{j \pi} \sin \left(\frac{j \pi \sigma(t)}{\sigma(T)}\right)
$$

with $\left(Z_{j}\right)_{j}$ (resp. $\left.\left(Z_{j}^{\prime}\right)_{j}\right)$ a sequence of independent standard Gaussian variables, independent of B^{1}.

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

There exists $c_{1}, c_{2}>0$ such that, if $X_{0}=X_{0}^{\prime}$, there exists a non co-adapted coupling on $\operatorname{SU}(2, \mathbb{C})$ and $S L(2, \mathbb{R})$ satisfying : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$.

- Decomposition of the Brownian bridges using Karhunen-Loève formula :

$$
B_{\sigma(t)}^{b r}=\sqrt{\sigma(T)} \sum_{j \geq 1} Z_{j} \frac{\sqrt{2}}{j \pi} \sin \left(\frac{j \pi \sigma(t)}{\sigma(T)}\right) \text { and } B_{\sigma(t)}^{b r^{\prime}}=\sqrt{\sigma(T)} \sum_{j \geq 1} Z_{j}^{\prime} \frac{\sqrt{2}}{j \pi} \sin \left(\frac{j \pi \sigma(t)}{\sigma(T)}\right)
$$

with $\left(Z_{j}\right)_{j}$ (resp. $\left.\left(Z_{j}^{\prime}\right)_{j}\right)$ a sequence of independent standard Gaussian variables, independent of B^{1}.

- We choose $Z_{j}=Z_{j}^{\prime}$ except for $j=1$.

We obtain : $\theta_{t}-\theta_{t}^{\prime}=\left(Z_{1}-Z_{1}^{\prime}\right) \frac{\sqrt{2 \sigma(T)}}{\pi} \sin \left(\frac{\pi \sigma(t)}{\sigma(T)}\right)$.

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

There exists $c_{1}, c_{2}>0$ such that, if $X_{0}=X_{0}^{\prime}$, there exists a non co-adapted coupling on $\operatorname{SU}(2, \mathbb{C})$ and $\operatorname{SL}(2, \mathbb{R})$ satisfying : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$.

- We have:
$z_{T}-z_{T}^{\prime}=z_{0}-z_{0}^{\prime}+K(T) \frac{z_{1}-Z_{1}^{\prime}}{2}$ with $K(T)=2 \sqrt{\frac{2}{\sigma(T)}} \int_{0}^{T} \frac{1}{1+\cos \left(\varphi_{s}\right)} \cos \left(\frac{\pi \sigma(s)}{\sigma(T)}\right) d s$.
We want: $\mathbb{P}\left(z_{T}-z_{T}^{\prime} \equiv 0(4 \pi)\right) \neq 0$.

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

There exists $c_{1}, c_{2}>0$ such that, if $X_{0}=X_{0}^{\prime}$, there exists a non co-adapted coupling on $\operatorname{SU}(2, \mathbb{C})$ and $\operatorname{SL}(2, \mathbb{R})$ satisfying : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$.

- We have :
$z_{T}-z_{T}^{\prime}=z_{0}-z_{0}^{\prime}+K(T) \frac{z_{1}-z_{1}^{\prime}}{2}$ with $K(T)=2 \sqrt{\frac{2}{\sigma(T)}} \int_{0}^{T} \frac{1}{1+\cos \left(\varphi_{s}\right)} \cos \left(\frac{\pi \sigma(s)}{\sigma(T)}\right) d s$.
We want: $\mathbb{P}\left(z_{T}-z_{T}^{\prime} \equiv 0(4 \pi)\right) \neq 0$.
- We take $\left(W_{t}\right)_{t}$ a Brownian motion independent of B^{1}, G and $\left(Z_{j}\right)_{j \geq 2}$. We define $\omega=\inf \left\{t \mid W_{t} \notin\right]-\frac{z_{0}-z_{0}^{\prime}}{K(T)}, \frac{-\left(z_{0}-z_{0}^{\prime}\right)+4 \pi}{K(T)}[\}$. Then we define $W_{t}^{\prime}:=\left\{\begin{array}{ll}-W_{t} & \text { if } t \leq \omega \\ W_{t}-2 W_{\omega} & \text { else }\end{array}\right.$. We choose : $Z_{1}:=-W_{1} \sim \mathcal{N}(0,1)$ and $Z_{1}^{\prime}:=W_{1}^{\prime} \sim \mathcal{N}(0,1)$.

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

There exists $c_{1}, c_{2}>0$ such that, if $X_{0}=X_{0}^{\prime}$, there exists a non co-adapted coupling on $\operatorname{SU}(2, \mathbb{C})$ and $\operatorname{SL}(2, \mathbb{R})$ satisfying : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$.

- We have:
$z_{T}-z_{T}^{\prime}=z_{0}-z_{0}^{\prime}+K(T) \frac{z_{1}-z_{1}^{\prime}}{2}$ with $K(T)=2 \sqrt{\frac{2}{\sigma(T)}} \int_{0}^{T} \frac{1}{1+\cos \left(\varphi_{s}\right)} \cos \left(\frac{\pi \sigma(s)}{\sigma(T)}\right) d s$.
We want: $\mathbb{P}\left(z_{T}-z_{T}^{\prime} \equiv 0(4 \pi)\right) \neq 0$.
- We take $\left(W_{t}\right)_{t}$ a Brownian motion independent of B^{1}, G and $\left(Z_{j}\right)_{j \geq 2}$. We define $\omega=\inf \left\{t \mid W_{t} \notin\right]-\frac{z_{0}-z_{0}^{\prime}}{K(T)}, \frac{-\left(z_{0}-z_{0}^{\prime}\right)+4 \pi}{K(T)}[\}$. Then we define $W_{t}^{\prime}:=\left\{\begin{array}{ll}-W_{t} & \text { if } t \leq \omega \\ W_{t}-2 W_{\omega} & \text { else }\end{array}\right.$.
We choose : $Z_{1}:=-W_{1} \sim \mathcal{N}(0,1)$ and $Z_{1}^{\prime}:=W_{1}^{\prime} \sim \mathcal{N}(0,1)$. With this coupling strategy we have two cases :
- If $\omega \leq 1$, then $K(T) \frac{z_{1}-z_{1}^{\prime}}{2}=K(T) W_{\omega} \equiv-\left(z_{0}-z_{0}^{\prime}\right)(4 \pi)$.
- If $\omega>1$, then $K(T) \frac{z_{1}-z_{1}^{\prime}}{2}=K(T) W_{1} \not \equiv-\left(z_{0}-z_{0}^{\prime}\right) \bmod (4 \pi)$.

Successful coupling on subRiemannian manifolds

Brownian bridges coupling

Theorem

There exists $c_{1}, c_{2}>0$ such that, if $X_{0}=X_{0}^{\prime}$, there exists a non co-adapted coupling on $\operatorname{SU}(2, \mathbb{C})$ and $\operatorname{SL}(2, \mathbb{R})$ satisfying : $\mathbb{P}(t<\tau) \leq c_{1} e^{-c_{2} t}$.

- We have:
$z_{T}-z_{T}^{\prime}=z_{0}-z_{0}^{\prime}+K(T) \frac{z_{1}-z_{1}^{\prime}}{2}$ with $K(T)=2 \sqrt{\frac{2}{\sigma(T)}} \int_{0}^{T} \frac{1}{1+\cos \left(\varphi_{s}\right)} \cos \left(\frac{\pi \sigma(s)}{\sigma(T)}\right) d s$.
We want: $\mathbb{P}\left(z_{T}-z_{T}^{\prime} \equiv 0(4 \pi)\right) \neq 0$.
- We take $\left(W_{t}\right)_{t}$ a Brownian motion independent of B^{1}, G and $\left(Z_{j}\right)_{j \geq 2}$. We define $\omega=\inf \left\{t \mid W_{t} \notin\right]-\frac{z_{0}-z_{0}^{\prime}}{K(T)}, \frac{-\left(z_{0}-z_{0}^{\prime}\right)+4 \pi}{K(T)}[\}$. Then we define $W_{t}^{\prime}:=\left\{\begin{array}{ll}-W_{t} & \text { if } t \leq \omega \\ W_{t}-2 W_{\omega} & \text { else }\end{array}\right.$.
We choose : $Z_{1}:=-W_{1} \sim \mathcal{N}(0,1)$ and $Z_{1}^{\prime}:=W_{1}^{\prime} \sim \mathcal{N}(0,1)$. With this coupling strategy we have two cases :
- If $\omega \leq 1$, then $K(T) \frac{z_{1}-z_{1}^{\prime}}{2}=K(T) W_{\omega} \equiv-\left(z_{0}-z_{0}^{\prime}\right)(4 \pi)$.
- If $\omega>1$, then $K(T) \frac{z_{1}-z_{1}^{\prime}}{2}=K(T) W_{1} \not \equiv-\left(z_{0}-z_{0}^{\prime}\right) \bmod (4 \pi)$.
- We reproduce this coupling until we get $\omega>1$.

Some references :

- Coupling in the Heisenberg group and its applications to gradient estimates,S. Banerjee, M. Gordina, P Mariano, 2017
- The subelliptic heat kernel on $S U(2)$: representations, asymptotics and gradient bounds, F.Baudoin, M.Bonnefont, 2009
- Couplings of Brownian motions on $\operatorname{SU}(2, \mathbb{C})$ and $S L(2, \mathbb{R})$, M.Bénéfice, 2023, Preprint
- Coupling time distribution asymptotics for some couplings of the Levy stochastic area, W. S. Kendall, 2010
- Liouville theorem and coupling on negatively curved Riemannian manifolds, F.-Y. Wang, 2002

Thank you for your attention.

