Coupling of Brownian motions with set valued dual processes on Riemannian manifolds

Marc Arnaudon

Institut de Mathématiques de Bordeaux, UMR5251

Journées de Probabilités, Angers, 22 juin 2023

<ロト < 団 ト < 巨 ト < 巨 ト 三 の Q () 1/21 joint work with

Koléhè Coulibaly-Pasquier (Institut Élie Cartan de Lorraine, Nancy, France) Laurent Miclo (Institut de Mathématiques de Toulouse, France) 1. Stochastic renormalized mean curvature flow and intertwined Brownian motion

2. Flows in \mathbb{R}^2 and lifetimes

Domain and skeleton

≣ •⁄) Q (? 4/21

・ロ・・聞・・ヨ・・ヨ・ しょうくぐ

Let (X_t) be a Markov in state space *M*, invariant probability μ .

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time τ' , $\mathscr{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathscr{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathscr{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

In the sequel *M* will be a Riemannian manifold, (X_t) will be a Brownian motion and \mathcal{U} will be the volume measure.

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathscr{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

In the sequel *M* will be a Riemannian manifold, (X_t) will be a Brownian motion and \mathcal{U} will be the volume measure.

Results

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathcal{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

In the sequel *M* will be a Riemannian manifold, (X_t) will be a Brownian motion and \mathcal{U} will be the volume measure.

Results

(1) We will prove that the following (D_t) solves the problem:

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathcal{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

In the sequel *M* will be a Riemannian manifold, (X_t) will be a Brownian motion and \mathscr{U} will be the volume measure.

Results

(1) We will prove that the following (D_t) solves the problem:

$$\blacktriangleright \mathscr{L}(X_0) = \mathscr{U}^{D_0};$$

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathscr{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

In the sequel *M* will be a Riemannian manifold, (X_t) will be a Brownian motion and \mathcal{U} will be the volume measure.

Results

(1) We will prove that the following (D_t) solves the problem:

$$\mathcal{L}(X_0) = \mathcal{U}^{D_0};$$

$$d\partial D_t(y) = N^{D_t}(y) \left(\langle dX_t, \nabla \rho_{\partial D_t}(X_t) \rangle + \frac{1}{2} h^{D_t}(y) dt + \Delta \rho_{\partial D_t}(X_t) dt \right)$$

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathcal{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

In the sequel *M* will be a Riemannian manifold, (X_t) will be a Brownian motion and \mathcal{U} will be the volume measure.

Results

(1) We will prove that the following (D_t) solves the problem:

$$\mathcal{L}(X_0) = \mathscr{U}^{D_0}; d\partial D_t(y) = N^{D_t}(y) \left(\langle dX_t, \nabla \rho_{\partial D_t}(X_t) \rangle + \frac{1}{2} h^{D_t}(y) dt + \Delta \rho_{\partial D_t}(X_t) dt^{\prime \prime} \right)$$

(2) We will also prove that (D_t) has same law as (\tilde{D}_t) starting from the same set: $\tilde{D}_0 = D_0$ and solving

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\mu(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right)$$

with W_t a real valued Brownian motion started at 0.

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathscr{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

In the sequel *M* will be a Riemannian manifold, (X_t) will be a Brownian motion and \mathcal{U} will be the volume measure.

Results

(1) We will prove that the following (D_t) solves the problem:

$$\mathcal{L}(X_0) = \mathscr{U}^{D_0}; d\partial D_t(y) = N^{D_t}(y) \left(\langle dX_t, \nabla \rho_{\partial D_t}(X_t) \rangle + \frac{1}{2} h^{D_t}(y) dt + "\Delta \rho_{\partial D_t}(X_t) dt" \right)$$

(2) We will also prove that (D_t) has same law as (\tilde{D}_t) starting from the same set: $\tilde{D}_0 = D_0$ and solving

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2}h^{\tilde{D}_t}(y) - \frac{\mu(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)}\right) dt \right)$$

with W_t a real valued Brownian motion started at 0. This process will be called the Stochastic Renormalized Mean Curvature Flow or the Geometric Bessel Process.

- Let (X_t) be a Markov in state space M, invariant probability μ .
- We want to find a stopping time τ as small as possible such that X_{τ} has law μ .
- For this we construct a set-valued dual process (D_t) such that for each (D_t) -stopping time $\tau', \mathscr{L}(X_{\tau'}|D_{[0,\tau']}) = \mu(\cdot|D_{\tau'})$.
- Then $\tau := \inf\{t \ge 0, D_t = M\}$ answers the question.

In the sequel *M* will be a Riemannian manifold, (X_t) will be a Brownian motion and \mathscr{U} will be the volume measure.

Results

(1) We will prove that the following (D_t) solves the problem:

$$\mathcal{L}(X_0) = \mathscr{U}^{D_0}; d\partial D_t(y) = N^{D_t}(y) \left(\langle dX_t, \nabla \rho_{\partial D_t}(X_t) \rangle + \frac{1}{2} h^{D_t}(y) dt + "\Delta \rho_{\partial D_t}(X_t) dt" \right)$$

(2) We will also prove that (D_t) has same law as (\tilde{D}_t) starting from the same set: $\tilde{D}_0 = D_0$ and solving

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2}h^{\tilde{D}_t}(y) - \frac{\mu(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)}\right) dt \right)$$

with W_t a real valued Brownian motion started at 0. This process will be called the Stochastic Renormalized Mean Curvature Flow or the Geometric Bessel Process.

First we investigate the case of *n*-dimensional spheres $S^n \subset \mathbb{R}^{n+1}$

In $S^n \subset \mathbb{R}^{n+1}$, we let X_t start from the north pole N. We will take $D_t = B(N, R_t)$, $\tilde{D}_t = B(N, \tilde{R}_t)$ started at $R_t = \tilde{R}_t = 0$.

►
$$R_t = \int_0^t \operatorname{sign}(X_s) dX_s + 2L_t^0(X)$$
 with $L_t^0(X)$ local time of X at 0:
 $L_t^0(X) = \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_0^t \mathbf{1}_{[-\varepsilon,\varepsilon]}(X_s) ds.$

$$\begin{array}{l} \blacktriangleright \quad R_t = \int_0^t \operatorname{sign}(X_s) \, dX_s + 2L_t^0(X) \text{ with } L_t^0(X) \text{ local time of } X \text{ at } 0: \\ L_t^0(X) = \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_0^t \mathbf{1}_{[-\varepsilon,\varepsilon]}(X_s) \, ds. \\ \triangleright \quad \mathscr{L}(X_{\tau'}|R_{[0,\tau']}) = \mathscr{U}^{[-R_{\tau'},R_{\tau'}]} \\ \triangleright \quad \tilde{R}_t = W_t + \int_0^t \frac{ds}{\tilde{R}_s} \end{array}$$

•
$$R_t = \int_0^t \operatorname{sign}(X_s) dX_s + 2L_t^0(X)$$
 with $L_t^0(X)$ local time of X at 0:
 $L_t^0(X) = \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_0^t \mathbf{1}_{[-\varepsilon,\varepsilon]}(X_s) ds.$
• $\mathscr{L}(X_{\tau'}|R_{[0,\tau']}) = \mathscr{U}^{[-R_{\tau'},R_{\tau'}]}$
• $\tilde{R}_t = W_t + \int_0^t \frac{ds}{\tilde{R}_s}$
• Moreover R_t and \tilde{R}_t are Bes(3).

In $S^n \subset \mathbb{R}^{n+1}$, we let X_t start from the north pole N. We will take $D_t = B(N, R_t)$, $\tilde{D}_t = B(N, \tilde{R}_t)$ started at $R_t = \tilde{R}_t = 0$. For n = 1, the equations and properties above write

•
$$R_t = \int_0^t \operatorname{sign}(X_s) dX_s + 2L_t^0(X)$$
 with $L_t^0(X)$ local time of X at 0:
 $L_t^0(X) = \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_0^t \mathbf{1}_{[-\varepsilon,\varepsilon]}(X_s) ds.$
• $\mathscr{L}(X_{\tau'}|R_{[0,\tau']}) = \mathscr{U}^{[-R_{\tau'},R_{\tau'}]}$
• $\tilde{R}_t = W_t + \int_0^t \frac{ds}{\tilde{R}_s}$
• Moreover R_t and \tilde{R}_t are Bes(3).

We recognize Pitman 2M - X theorem.

Let S^n be the sphere in \mathbb{R}^{n+1} , with north pole *N*.

Let S^n be the sphere in \mathbb{R}^{n+1} , with north pole *N*.

The dual set-valued D_t with starting set $\{N\}$ is the ball $D_t = B(N, R_t)$ with R_t satisfying

$$dR_t = \langle dX_t, N(X_t) \rangle + \left(-\frac{d\cos(R_t)}{2\sin(R_t)} + \frac{d\cos(r(X_t))}{\sin(r(X_t))} \right) dt$$

Let S^n be the sphere in \mathbb{R}^{n+1} , with north pole *N*.

The dual set-valued D_t with starting set $\{N\}$ is the ball $D_t = B(N, R_t)$ with R_t satisfying

$$dR_t = \langle dX_t, N(X_t) \rangle + \left(-\frac{d\cos(R_t)}{2\sin(R_t)} + \frac{d\cos(r(X_t))}{\sin(r(X_t))} \right) dt$$

The stochastic mean curvature flow with starting set $\{N\}$ is the ball $\tilde{D}_t = B(N, \tilde{R}_t)$ with \tilde{R}_t satisfying

$$d\tilde{R}_t = dW_t + \left(-\frac{d\cos(\tilde{R}_t)}{2\sin(\tilde{R}_t)} + \frac{\sin^d(\tilde{R}_t)}{\int_0^{\tilde{R}_t}\sin^d(u)du}\right) dt$$

Let S^n be the sphere in \mathbb{R}^{n+1} , with north pole *N*.

The dual set-valued D_t with starting set $\{N\}$ is the ball $D_t = B(N, R_t)$ with R_t satisfying

$$dR_t = \langle dX_t, N(X_t) \rangle + \left(-\frac{d\cos(R_t)}{2\sin(R_t)} + \frac{d\cos(r(X_t))}{\sin(r(X_t))} \right) dt$$

The stochastic mean curvature flow with starting set $\{N\}$ is the ball $\tilde{D}_t = B(N, \tilde{R}_t)$ with \tilde{R}_t satisfying

$$d\tilde{R}_t = dW_t + \left(-\frac{d\cos(\tilde{R}_t)}{2\sin(\tilde{R}_t)} + \frac{\sin^d(\tilde{R}_t)}{\int_0^{\tilde{R}_t} \sin^d(u)du}\right) du$$

Theorem (ACM 23)

Let $\tilde{\tau}(n)$ be the hitting time of the south pole. We have for large *n*:

$$\mathbb{E}[ilde{ au}(n)] \sim rac{\ln(n)}{n}$$

Let S^n be the sphere in \mathbb{R}^{n+1} , with north pole *N*.

The dual set-valued D_t with starting set $\{N\}$ is the ball $D_t = B(N, R_t)$ with R_t satisfying

$$dR_t = \langle dX_t, N(X_t) \rangle + \left(-\frac{d\cos(R_t)}{2\sin(R_t)} + \frac{d\cos(r(X_t))}{\sin(r(X_t))} \right) dt$$

The stochastic mean curvature flow with starting set $\{N\}$ is the ball $\tilde{D}_t = B(N, \tilde{R}_t)$ with \tilde{R}_t satisfying

$$d\tilde{R}_t = dW_t + \left(-\frac{d\cos(\tilde{R}_t)}{2\sin(\tilde{R}_t)} + \frac{\sin^d(\tilde{R}_t)}{\int_0^{\tilde{R}_t} \sin^d(u)du}\right) du$$

Theorem (ACM 23)

Let $\tilde{\tau}(n)$ be the hitting time of the south pole. We have for large *n*:

$$\mathbb{E}[ilde{ au}(n)] \sim rac{\ln(n)}{n}$$

Moreover for any r > 0

$$\lim_{d\to\infty}\mathbb{P}\left[\tilde{\tau}(n)\geq(1+r)\frac{\ln(n)}{n}\right]=\lim_{n\to\infty}\mathbb{P}\left[\tilde{\tau}(n)\leq(1-r)\frac{\ln n}{n}\right]=0$$

Let S^n be the sphere in \mathbb{R}^{n+1} , with north pole *N*.

The dual set-valued D_t with starting set $\{N\}$ is the ball $D_t = B(N, R_t)$ with R_t satisfying

$$dR_t = \langle dX_t, N(X_t) \rangle + \left(-\frac{d\cos(R_t)}{2\sin(R_t)} + \frac{d\cos(r(X_t))}{\sin(r(X_t))} \right) dt$$

The stochastic mean curvature flow with starting set $\{N\}$ is the ball $\tilde{D}_t = B(N, \tilde{R}_t)$ with \tilde{R}_t satisfying

$$d\tilde{R}_t = dW_t + \left(-\frac{d\cos(\tilde{R}_t)}{2\sin(\tilde{R}_t)} + \frac{\sin^d(\tilde{R}_t)}{\int_0^{\tilde{R}_t} \sin^d(u)du}\right) du$$

Theorem (ACM 23)

Let $\tilde{\tau}(n)$ be the hitting time of the south pole. We have for large *n*:

$$\mathbb{E}[ilde{ au}(n)] \sim rac{\ln(n)}{n}$$

Moreover for any r > 0

$$\lim_{d\to\infty}\mathbb{P}\left[\tilde{\tau}(n)\geq(1+r)\frac{\ln(n)}{n}\right]=\lim_{n\to\infty}\mathbb{P}\left[\tilde{\tau}(n)\leq(1-r)\frac{\ln n}{n}\right]=0$$

Consequence: the same asymptotic holds for the strong stationary time $\tau(n)$ for the Brownian motion X_t started at $N(X_{\tau(n)})$ is uniformly distributed in S^n).

Stochastic renormalized mean curvature flow in manifolds

Stochastic renormalized mean curvature flow in manifolds

It is the solution to equation

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\mu(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right)$$

Stochastic renormalized mean curvature flow in manifolds

It is the solution to equation

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2}h^{\tilde{D}_t}(y) - \frac{\mu(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)}\right) dt \right)$$

Link to Bessel(3) process : Up to the stopping time until which everything is defined, we always have:

Theorem ([Coulibaly-Miclo:18])

The volume process $\left(\mu(\tilde{D}_{\tau(t)})\right)_{t\geq 0}$ is a Bessel process of dimension 3, where the time change $\tau(t)$ is the inverse of

$$t\mapsto \int_0^t \left(\underline{\mu}(\partial ilde{D}_{\mathcal{S}})
ight)^2 \, d{f s}$$

Domain and skeleton

≣ •⁄) Q (? 9/21
A general coupling equation

► For each closed domain $D \subset M$ with smooth boundary, let $f^D : D \to \mathbb{R}$ satisfy: $\|\nabla f^D\|_{\infty} \leq 1, \nabla f^D = \nabla \rho_{\partial D}$ around boundary, $(x, D) \mapsto f^D(x)$ is sufficiently regular.

A general coupling equation

- For each closed domain $D \subset M$ with smooth boundary, let $f^D : D \to \mathbb{R}$ satisfy: $\|\nabla f^D\|_{\infty} \leq 1, \nabla f^D = \nabla \rho_{\partial D}$ around boundary, $(x, D) \mapsto f^D(x)$ is sufficiently regular.
- Consider the system of Itô equations

 $\begin{cases} X_t \text{ is a Brownian motion} \\ d\partial D_t(y) = N^{D_t}(y) \left(\langle dX_t, \nabla f^D(X_t) \rangle + \sigma_t dW_t + \left(\frac{1}{2} h^{D_t}(y) + \Delta f^{D_t}(X_t) \right) dt \right) \end{cases}$

with $\sigma_t = \sqrt{1 - \|\nabla f^D(X_t)\|^2}$, $X \perp W$, initial condition D_0 , and $X_0 \sim U^{D_0}$.

A general coupling equation

- For each closed domain $D \subset M$ with smooth boundary, let $f^D : D \to \mathbb{R}$ satisfy: $\|\nabla f^D\|_{\infty} \leq 1, \nabla f^D = \nabla \rho_{\partial D}$ around boundary, $(x, D) \mapsto f^D(x)$ is sufficiently regular.
- Consider the system of Itô equations

 $\begin{cases} X_t \text{ is a Brownian motion} \\ d\partial D_t(y) = N^{D_t}(y) \left(\langle dX_t, \nabla f^D(X_t) \rangle + \sigma_t dW_t + \left(\frac{1}{2} h^{D_t}(y) + \Delta f^{D_t}(X_t) \right) dt \right) \end{cases}$

with $\sigma_t = \sqrt{1 - \|\nabla f^D(X_t)\|^2}$, $X \perp W$, initial condition D_0 , and $X_0 \sim U^{D_0}$.

Consider the equation

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(d\tilde{W}_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\mu(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right)$$

This is the equation for the renormalized stochastic mean curvature flow.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define

• \mathcal{L} the generator of (X_t, D_t) stopped before hitting time by D_t of its inner and outer skeleton.

Define

- \mathcal{L} the generator of (X_t, D_t) stopped before hitting time by D_t of its inner and outer skeleton.
- $\tilde{\mathcal{L}}$ the generator of \tilde{D}_t with same stopping time, and $\tilde{\nu}_t$ its law at time t

Define

- \mathcal{L} the generator of (X_t, D_t) stopped before hitting time by D_t of its inner and outer skeleton.
- $\tilde{\mathcal{L}}$ the generator of \tilde{D}_t with same stopping time, and $\tilde{\nu}_t$ its law at time t
- $\blacktriangleright \nu_t(dx, dD) = \tilde{\nu}_t(dD)\mathcal{U}^D(dx)$

Define

- L the generator of (X_t, D_t) stopped before hitting time by D_t of its inner and outer skeleton.
- $\tilde{\mathcal{L}}$ the generator of \tilde{D}_t with same stopping time, and $\tilde{\nu}_t$ its law at time t

$$\nu_t(dx, dD) = \tilde{\nu}_t(dD)\mathcal{U}^D(dx)$$

Theorem

(1) $\partial_t \nu_t(\cdot) = \nu_t (\mathcal{L}(\cdot))$. As a consequence ν_t is invariant by the semigroup \mathcal{P}_t of (X_t, D_t) ,

Define

- \mathcal{L} the generator of (X_t, D_t) stopped before hitting time by D_t of its inner and outer skeleton.
- $\tilde{\mathcal{L}}$ the generator of \tilde{D}_t with same stopping time, and $\tilde{\nu}_t$ its law at time t

$$\nu_t(dx, dD) = \tilde{\nu}_t(dD)\mathcal{U}^D(dx)$$

- (1) $\partial_t \nu_t(\cdot) = \nu_t (\mathcal{L}(\cdot))$. As a consequence ν_t is invariant by the semigroup \mathcal{P}_t of (X_t, D_t) ,
- (2) For all *D*-stopping time τ , conditional to $D_{[0,\tau]}$, X_{τ} has uniform law in D_{τ} .

Define

- \mathcal{L} the generator of (X_t, D_t) stopped before hitting time by D_t of its inner and outer skeleton.
- $\tilde{\mathcal{L}}$ the generator of \tilde{D}_t with same stopping time, and $\tilde{\nu}_t$ its law at time t

$$\nu_t(dx, dD) = \tilde{\nu}_t(dD)\mathcal{U}^D(dx)$$

- (1) $\partial_t \nu_t(\cdot) = \nu_t (\mathcal{L}(\cdot))$. As a consequence ν_t is invariant by the semigroup \mathcal{P}_t of (X_t, D_t) ,
- (2) For all *D*-stopping time τ , conditional to $D_{[0,\tau]}$, X_{τ} has uniform law in D_{τ} .
- (3) $(D_t)_{t\geq 0}$ and $(\tilde{D}_t)_{t\geq 0}$ have the same law, and in particular $(D_t)_{t\geq 0}$ is a Markov process, stopped at hitting time of inner or outer skeleton.

Define

- \mathcal{L} the generator of (X_t, D_t) stopped before hitting time by D_t of its inner and outer skeleton.
- $\tilde{\mathcal{L}}$ the generator of \tilde{D}_t with same stopping time, and $\tilde{\nu}_t$ its law at time t
- $\blacktriangleright \nu_t(dx, dD) = \tilde{\nu}_t(dD)\mathcal{U}^D(dx)$

- (1) $\partial_t \nu_t(\cdot) = \nu_t (\mathcal{L}(\cdot))$. As a consequence ν_t is invariant by the semigroup \mathcal{P}_t of (X_t, D_t) ,
- (2) For all *D*-stopping time τ , conditional to $D_{[0,\tau]}$, X_{τ} has uniform law in D_{τ} .
- (3) $(D_t)_{t\geq 0}$ and $(\tilde{D}_t)_{t\geq 0}$ have the same law, and in particular $(D_t)_{t\geq 0}$ is a Markov process, stopped at hitting time of inner or outer skeleton.
- (4) If $\tau = \tau_M$ hitting time of *M* by D_t , then conditional to $D_{[0, \tau_M]}$, X_{τ_M} has uniform law in *M*

Define

- \mathcal{L} the generator of (X_t, D_t) stopped before hitting time by D_t of its inner and outer skeleton.
- $\tilde{\mathcal{L}}$ the generator of \tilde{D}_t with same stopping time, and $\tilde{\nu}_t$ its law at time t

$$\nu_t(dx, dD) = \tilde{\nu}_t(dD)\mathcal{U}^D(dx)$$

Theorem

- (1) $\partial_t \nu_t(\cdot) = \nu_t (\mathcal{L}(\cdot))$. As a consequence ν_t is invariant by the semigroup \mathcal{P}_t of (X_t, D_t) ,
- (2) For all *D*-stopping time τ , conditional to $D_{[0,\tau]}$, X_{τ} has uniform law in D_{τ} .
- (3) $(D_t)_{t\geq 0}$ and $(\tilde{D}_t)_{t\geq 0}$ have the same law, and in particular $(D_t)_{t\geq 0}$ is a Markov process, stopped at hitting time of inner or outer skeleton.
- (4) If $\tau = \tau_M$ hitting time of *M* by D_t , then conditional to $D_{[0, \tau_M]}$, X_{τ_M} has uniform law in *M*

Remark

A key ingredient for the proof is Stokes theorem

(ロ) (四) (注) (注) (注) 12/21

Full couplings and local times on skeleton. Geometric Pitman theorem It is the situation where $f^{D} = \rho_{\partial D}$

It is the situation where $f^D = \rho_{\partial D}$ X_t a Brownian motion in *M* with $X_0 \sim U^{D_0}$. Define

$$d\partial D_{t}(y) = N^{D_{t}}(y) \left(\langle dX_{t}, N^{D_{t}}(X_{t}) \rangle + \frac{1}{2} h^{D_{t}}(y) dt + \left(-h^{D_{t}}(X_{t}) dt - 2 \sin \theta^{S_{t}}(X_{t}) dL^{S_{t}}(X) \right) \right)$$
$$= N^{D_{t}}(y) \left(\langle dX_{t}, \nabla \rho_{\partial D_{t}}(X_{t}) \rangle + \frac{1}{2} h^{D_{t}}(y) dt + "\Delta \rho_{\partial D_{t}}(X_{t}) dt" \right)$$

with h^{D_t} mean curvature of level sets of $\rho_{\partial D_t}$,

 $L^{S_{\cdot}}(X)$ local time of X_t on the skeleton S_t of D_t , $\theta^{S_t}(X_t)$ the angle between the skeleton and any of the geodesics from ∂D_t .

It is the situation where $f^D = \rho_{\partial D}$ X_t a Brownian motion in *M* with $X_0 \sim U^{D_0}$. Define

$$d\partial D_t(y) = N^{D_t}(y) \left(\langle dX_t, N^{D_t}(X_t) \rangle + \frac{1}{2} h^{D_t}(y) dt + \left(-h^{D_t}(X_t) dt - 2\sin\theta^{S_t}(X_t) dL^{S_t}(X) \right) \right)$$
$$= N^{D_t}(y) \left(\langle dX_t, \nabla \rho_{\partial D_t}(X_t) \rangle + \frac{1}{2} h^{D_t}(y) dt + "\Delta \rho_{\partial D_t}(X_t) dt" \right)$$

with h^{D_t} mean curvature of level sets of $\rho_{\partial D_t}$,

 $L^{S_t}(X)$ local time of X_t on the skeleton S_t of D_t , $\theta^{S_t}(X_t)$ the angle between the skeleton and any of the geodesics from ∂D_t .

- (1) $\partial_t \nu_t(\cdot) = \nu_t (\mathcal{L}(\cdot))$. As a consequence ν_t is invariant by the semigroup \mathcal{P}_t of (X_t, D_t) ,
- (2) For all *D*-stopping time τ , conditional to $D_{[0,\tau]}$, X_{τ} has uniform law in D_{τ} .
- (3) $(D_t)_{t\geq 0}$ and $(\tilde{D}_t)_{t\geq 0}$ have the same law, and in particular $(D_t)_{t\geq 0}$ is a Markov process, stopped at hitting time of inner or outer skeleton.

It is the situation where $f^D = \rho_{\partial D}$ X_t a Brownian motion in *M* with $X_0 \sim U^{D_0}$. Define

$$d\partial D_t(y) = N^{D_t}(y) \left(\langle dX_t, N^{D_t}(X_t) \rangle + \frac{1}{2} h^{D_t}(y) dt + \left(-h^{D_t}(X_t) dt - 2\sin\theta^{S_t}(X_t) dL^{S_t}(X) \right) \right)$$
$$= N^{D_t}(y) \left(\langle dX_t, \nabla \rho_{\partial D_t}(X_t) \rangle + \frac{1}{2} h^{D_t}(y) dt + "\Delta \rho_{\partial D_t}(X_t) dt" \right)$$

with h^{D_t} mean curvature of level sets of $\rho_{\partial D_t}$,

 $L^{S_{\cdot}}(X)$ local time of X_t on the skeleton S_t of D_t , $\theta^{S_t}(X_t)$ the angle between the skeleton and any of the geodesics from ∂D_t .

Theorem

- (1) $\partial_t \nu_t(\cdot) = \nu_t (\mathcal{L}(\cdot))$. As a consequence ν_t is invariant by the semigroup \mathcal{P}_t of (X_t, D_t) ,
- (2) For all *D*-stopping time τ , conditional to $D_{[0,\tau]}$, X_{τ} has uniform law in D_{τ} .
- (3) $(D_t)_{t\geq 0}$ and $(\tilde{D}_t)_{t\geq 0}$ have the same law, and in particular $(D_t)_{t\geq 0}$ is a Markov process, stopped at hitting time of inner or outer skeleton.

Remark

(2), (3) is a generalization of Pitman 2M - X theorem

Full coupling

≣ •⁄ ⊂ (~ 13/21

Full decouplings and local times on boundary

Full decouplings and local times on boundary

The equations for X_t and D_t are

$$\begin{cases} X_t & \text{Brownian motion in } M \text{ independent of } W_t \\ d\partial D_t(y) & = N^{D_t}(y) \left(dW_t + \left(\frac{1}{2} h^{D_t}(y) dt - dL_t^{\partial D_t}(X) \right) \right) \end{cases}$$

where W_t is a real valued Brownian motion and $L_t^{\partial D_t}(X)$ is the local time of X. on ∂D_t . Again the initial conditions are D_0 , and $X_0 \sim U^{D_0}$.

Full decouplings and local times on boundary

The equations for X_t and D_t are

$$\begin{cases} X_t & \text{Brownian motion in } M \text{ independent of } W_t \\ d\partial D_t(y) & = N^{D_t}(y) \left(dW_t + \left(\frac{1}{2} h^{D_t}(y) dt - dL_t^{\partial D_t}(X) \right) \right) \end{cases}$$

where W_t is a real valued Brownian motion and $L_t^{\partial D_t}(X)$ is the local time of X. on ∂D_t . Again the initial conditions are D_0 , and $X_0 \sim U^{D_0}$.

- (1) For all *D*-stopping time τ , $\mathcal{L}(X_{\tau}|D_{[0,\tau]}) = \mathcal{U}^{D_{\tau}}$
- (2) $(D_t)_{t\geq 0}$ and $(\tilde{D}_t)_{t\geq 0}$ have the same law, and in particular $(D_t)_{t\geq 0}$ is a Markov process.

Full decoupling

≣ •⁄ ⊂ (~ 15/21

Pitman coupling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let us consider the equation $d\partial D_t(y) = \frac{1}{2}N^{D_t}(y)h^{D_t}(y) dt$

Let us consider the equation $d\partial D_t(y) = \frac{1}{2}N^{D_t}(y)h^{D_t}(y)dt$

▶ It is the inverse gradient flow for $\frac{1}{2}$ the length of the boundary $\sigma_t := \mu(\partial D_t)$;

Let us consider the equation $d\partial D_t(y) = \frac{1}{2}N^{D_t}(y)h^{D_t}(y)dt$

- ► It is the inverse gradient flow for $\frac{1}{2}$ the length of the boundary $\sigma_t := \underline{\mu}(\partial D_t)$; ► Starting from a smooth set, no self intersection of the boundary occurs;

Let us consider the equation $d\partial D_t(y) = \frac{1}{2}N^{D_t}(y)h^{D_t}(y)dt$

- ▶ It is the inverse gradient flow for $\frac{1}{2}$ the length of the boundary $\sigma_t := \mu(\partial D_t)$;
- Starting from a smooth set, no self intersection of the boundary occurs;
- The solution becomes more and more round (isoperimetric ratio converges to 1) and shrinks to a point in finite time (Huisken 84, Gage 83, Gage 84, Gage-Hamilton 86).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで 18/21

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

Proposition

• It is the inverse gradient flow for $\ln \frac{\sigma_t}{2\lambda_t^2}$;

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

Proposition

- It is the inverse gradient flow for $\ln \frac{\sigma_t}{2\lambda_t^2}$;
- Self intersection of the boundary can occur, unless we start from a convex set;

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

Proposition

- lt is the inverse gradient flow for $\ln \frac{\sigma_t}{2\lambda_t^2}$;
- Self intersection of the boundary can occur, unless we start from a convex set;
- Starting form a strictly convex set :
 - we can parametrize with angle θ . The curvature $\rho(\theta)$ satisfies

$$\partial_t \rho_t(\theta) = \frac{1}{2} \rho_t^2(\theta) \left(\partial_\theta^2 \rho_t(\theta) + \rho_t(\theta) - 2k_t \right) \quad \text{where} \quad k_t = \frac{\sigma_t}{\lambda_t};$$

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

Proposition

- lt is the inverse gradient flow for $\ln \frac{\sigma_t}{2\lambda_t^2}$;
- Self intersection of the boundary can occur, unless we start from a convex set;
- Starting form a strictly convex set :
 - we can parametrize with angle θ . The curvature $\rho(\theta)$ satisfies

$$\partial_t \rho_t(\theta) = \frac{1}{2} \rho_t^2(\theta) \left(\partial_{\theta}^2 \rho_t(\theta) + \rho_t(\theta) - 2k_t \right) \quad \text{where} \quad k_t = \frac{\sigma_t}{\lambda_t};$$

• $\rho_t(\theta)$ stays away from 0;

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

Proposition

- lt is the inverse gradient flow for $\ln \frac{\sigma_t}{2\lambda_{\star}^2}$;
- Self intersection of the boundary can occur, unless we start from a convex set;
- Starting form a strictly convex set :
 - we can parametrize with angle θ . The curvature $\rho(\theta)$ satisfies

$$\partial_t \rho_t(\theta) = \frac{1}{2} \rho_t^2(\theta) \left(\partial_\theta^2 \rho_t(\theta) + \rho_t(\theta) - 2k_t \right) \quad \text{where} \quad k_t = \frac{\sigma_t}{\lambda_t};$$

*ρ*_t(*θ*) stays away from 0;
 the function t → k_t is decreasing. This relies on the highly non trivial Gage inequality *k* ≤ ¹/_π ∫_{S_t} ρ(θ) dθ;

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

Proposition

- lt is the inverse gradient flow for $\ln \frac{\sigma_t}{2\lambda^2}$;
- Self intersection of the boundary can occur, unless we start from a convex set;
- Starting form a strictly convex set :
 - we can parametrize with angle θ . The curvature $\rho(\theta)$ satisfies

$$\partial_t \rho_t(\theta) = \frac{1}{2} \rho_t^2(\theta) \left(\partial_\theta^2 \rho_t(\theta) + \rho_t(\theta) - 2k_t \right) \quad \text{where} \quad k_t = \frac{\sigma_t}{\lambda_t};$$

- *ρ*_t(*θ*) stays away from 0;
 the function t → k_t is decreasing. This relies on the highly non trivial Gage inequality
 k ≤ ¹/_π ∫_{S1} ρ(θ) dθ;
- the "entropy function" $t \mapsto \int_{S_1} \log \rho_t(\theta) d\theta = \int \rho_t \log \rho_t ds$ is decreasing
Renormalized mean curvature flow in \mathbb{R}^2

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

- lt is the inverse gradient flow for $\ln \frac{\delta_t}{2\lambda_t^2}$;
- Self intersection of the boundary can occur, unless we start from a convex set;
- Starting form a strictly convex set :
 - we can parametrize with angle θ . The curvature $\rho(\theta)$ satisfies

$$\partial_t \rho_t(\theta) = \frac{1}{2} \rho_t^2(\theta) \left(\partial_\theta^2 \rho_t(\theta) + \rho_t(\theta) - 2k_t \right) \quad \text{where} \quad k_t = \frac{\sigma_t}{\lambda_t};$$

- $\rho_t(\theta)$ stays away from 0;
- the function $t \mapsto k_t$ is decreasing. This relies on the highly non trivial Gage inequality $k \leq \frac{1}{\pi} \int_{S} \rho(\theta) d\theta$;
- the "entropy function" $t \mapsto \int_{S_1} \log \rho_t(\theta) d\theta = \int \rho_t \log \rho_t ds$ is decreasing
- we have an inverse Poincaré inequality $\int_{S_1} (\partial_{\theta} \rho)^2 \leq \int_{S_1} \rho^2 + C;$

Renormalized mean curvature flow in \mathbb{R}^2

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

Proposition

- lt is the inverse gradient flow for $\ln \frac{\sigma_t}{2\lambda_t^2}$;
- Self intersection of the boundary can occur, unless we start from a convex set;
- Starting form a strictly convex set :
 - we can parametrize with angle θ . The curvature $\rho(\theta)$ satisfies

$$\partial_t \rho_t(\theta) = \frac{1}{2} \rho_t^2(\theta) \left(\partial_\theta^2 \rho_t(\theta) + \rho_t(\theta) - 2k_t \right) \quad \text{where} \quad k_t = \frac{\sigma_t}{\lambda_t};$$

- $\rho_t(\theta)$ stays away from 0;
- the function $t \mapsto k_t$ is decreasing. This relies on the highly non trivial Gage inequality $k \leq \frac{1}{\pi} \int_{S} \rho(\theta) d\theta$;
- the "entropy function" $t \mapsto \int_{S_1} \log \rho_t(\theta) d\theta = \int \rho_t \log \rho_t ds$ is decreasing

• we have an inverse Poincaré inequality
$$\int_{S_1} (\partial_{\theta} \rho)^2 \leq \int_{S_1} \rho^2 + C;$$

so max_θ ρ_t(θ) stays bounded;

Renormalized mean curvature flow in \mathbb{R}^2

The equation is
$$d\partial D_t(y) = N^{D_t}(y) \left(\frac{1}{2}h^{D_t}(y) - \frac{\sigma_t}{\lambda_t}\right) dt$$
 with again $\sigma_t := \underline{\mu}(\partial D_t)$ and $\lambda_t := \mu(D_t)$;

- lt is the inverse gradient flow for $\ln \frac{\sigma_t}{2\lambda^2}$;
- Self intersection of the boundary can occur, unless we start from a convex set;
- Starting form a strictly convex set :
 - we can parametrize with angle θ . The curvature $\rho(\theta)$ satisfies

$$\partial_t \rho_t(\theta) = \frac{1}{2} \rho_t^2(\theta) \left(\partial_\theta^2 \rho_t(\theta) + \rho_t(\theta) - 2k_t \right) \quad \text{where} \quad k_t = \frac{\sigma_t}{\lambda_t};$$

- $\rho_t(\theta)$ stays away from 0;
- the function $t \mapsto k_t$ is decreasing. This relies on the highly non trivial Gage inequality $k \leq \frac{1}{\pi} \int_{S} \rho(\theta) d\theta$;
- the "entropy function" $t \mapsto \int_{S_1} \log \rho_t(\theta) d\theta = \int \rho_t \log \rho_t ds$ is decreasing
- ▶ we have an inverse Poincaré inequality $\int_{S_1} (\partial_{\theta} \rho)^2 \leq \int_{S_1} \rho^2 + C;$
- so $\max_{\theta} \rho_t(\theta)$ stays bounded;
- finally we prove infinite lifetime and convergence to a disk.

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2}h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)}\right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

Proposition

Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;
- $\rho_t(\theta)$ stays away from 0;

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;
- $\rho_t(\theta)$ stays away from 0;
- the process $t \mapsto k_t$ is a supermartingale;

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;
- $\rho_t(\theta)$ stays away from 0;
- the process $t \mapsto k_t$ is a supermartingale;
- ► starting from a *n* branches skeleton with $n \ge 3$, the entropy $t \mapsto \int \log \rho_t$ is a supermartingale (improvement of Wirtinger inequality with symmetries)

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;
- $\rho_t(\theta)$ stays away from 0;
- the process $t \mapsto k_t$ is a supermartingale;
- starting from a *n* branches skeleton with *n* ≥ 3, the entropy *t* → ∫ log ρ_t is a supermartingale (improvement of Wirtinger inequality with symmetries)
- ▶ starting from a *n* branches skeleton with $n \ge 7$, the process $t \mapsto \int \rho_t^4$ is a supermartingale (plus a bounded process);

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;
- $\rho_t(\theta)$ stays away from 0;
- the process $t \mapsto k_t$ is a supermartingale;
- starting from a *n* branches skeleton with *n* ≥ 3, the entropy *t* → ∫ log ρ_t is a supermartingale (improvement of Wirtinger inequality with symmetries)
- ▶ starting from a *n* branches skeleton with $n \ge 7$, the process $t \mapsto \int \rho_t^4$ is a supermartingale (plus a bounded process);moreover $\int (\partial_{\theta} \rho_t)^2 \le C \int \rho_t^4 + \text{mart};$

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;
- $\rho_t(\theta)$ stays away from 0;
- the process $t \mapsto k_t$ is a supermartingale;
- ▶ starting from a *n* branches skeleton with $n \ge 3$, the entropy $t \mapsto \int \log \rho_t$ is a supermartingale (improvement of Wirtinger inequality with symmetries)
- ▶ starting from a *n* branches skeleton with *n* ≥ 7, the process *t* → $\int \rho_t^4$ is a supermartingale (plus a bounded process);moreover $\int (\partial_{\theta} \rho_t)^2 \leq C \int \rho_t^4 + \text{mart;consequently } t \mapsto \int (\partial_{\theta} \rho_t)^2$ remains bounded;

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;
- $\rho_t(\theta)$ stays away from 0;
- the process $t \mapsto k_t$ is a supermartingale;
- ▶ starting from a *n* branches skeleton with $n \ge 3$, the entropy $t \mapsto \int \log \rho_t$ is a supermartingale (improvement of Wirtinger inequality with symmetries)
- ▶ starting from a *n* branches skeleton with *n* ≥ 7, the process *t* → $\int \rho_t^4$ is a supermartingale (plus a bounded process);moreover $\int (\partial_{\theta} \rho_t)^2 \leq C \int \rho_t^4 + \text{mart;consequently } t \mapsto \int (\partial_{\theta} \rho_t)^2$ remains bounded;
- so $\max_{\theta} \rho_t(\theta)$ a.s. stays bounded;

$$d\partial \tilde{D}_t(y) = N^{\tilde{D}_t}(y) \left(dW_t + \left(\frac{1}{2} h^{\tilde{D}_t}(y) - \frac{\underline{\mu}(\partial \tilde{D}_t)}{\mu(\tilde{D}_t)} \right) dt \right), \quad W_t \text{ Brownian motion in } \mathbb{R}$$

- Small time existence for $C^{2+\alpha}$ initial curve ($\alpha > 0$) (Coulibaly-Miclo 2018);
- ► It preserves strictly convex sets, so can rewrite with θ parametrization and curvature $\rho(\theta)$: $d\rho_t(\theta) = \frac{1}{2}\rho_t^2(\theta) \left[\left(\partial_{\theta}^2 \rho_t(\theta) + 2\rho_t(\theta) 3k_t \right) dt dW_t \right]$
- Assume symmetries by rotation of angle 2π/n and reflection with respect to horizontal axis. Then the equation preserves the shape of n branches skeletons;
- Extremity x_t of skeleton satisfies $\frac{dx_t}{dt} = \frac{\text{dist}^2((x_t, 0), y_t)}{2} (h^{D_t})''(y_t)$. Skeleton is strictly decreasing;
- $\rho_t(\theta)$ stays away from 0;
- the process $t \mapsto k_t$ is a supermartingale;
- ▶ starting from a *n* branches skeleton with $n \ge 3$, the entropy $t \mapsto \int \log \rho_t$ is a supermartingale (improvement of Wirtinger inequality with symmetries)
- ▶ starting from a *n* branches skeleton with *n* ≥ 7, the process *t* → $\int \rho_t^4$ is a supermartingale (plus a bounded process);moreover $\int (\partial_{\theta} \rho_t)^2 \leq C \int \rho_t^4 + \text{mart;consequently } t \mapsto \int (\partial_{\theta} \rho_t)^2$ remains bounded;
- so max_{θ} $\rho_t(\theta)$ a.s. stays bounded; finally we prove infinite lifetime.

Thanks for your attention