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1. Stochastic renormalized mean curvature flow and intertwined Brownian motion

2. Flows in R? and lifetimes
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w60 o (01220

with W; a real valued Brownian motion started at 0. This process will be called the
Stochastic Renormalized Mean Curvature Flow or the Geometric Bessel Process.

First we investigate the case of n-dimensional spheres S” c R™*1.
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> Moreover R; and R; are Bes(3).
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Theorem (ACM 23)
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Moreover for any r > 0
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Consequence: the same asymptotic holds for the strong stationary time =(n) for the
Brownian motion X; started at N (X7 () is uniformly distributed in S”).
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Stochastic renormalized mean curvature flow in manifolds

It is the solution to equation

doby(y) = NP:(y) <th + <; hPx(y) — u(aDr)> dt)

(b

Link to Bessel(3) process : Up to the stopping time until which everything is defined,
we always have:

Theorem ([Coulibaly-Miclo:18])

The volume process (M(DT([)))t>0 is a Bessel process of dimension 3, where the time

change 7(t)is the inverse of

ts /0: (H(abs))2 ds
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> For each closed domain D C M with smooth boundary, let f° : D — R satisfy:
IVfP|leo < 1, VIP = Vpyp around boundary, (x, D) — P(x) is sufficiently
regular.

> Consider the system of It equations
X: is a Brownian motion
doDy(y) = NPi(y) ((aX,, VIP(X,)) + odWs + (500 (y) + AP (X)) o)

with oy = /1 — [[VP(X})[|2, X L W, initial condition Dy, and Xy ~ Uo.
> Consider the equation

dobi(y) = NP:(y) <th + (;h[”(y) - MaDO) dt)

(D)

This is the equation for the renormalized stochastic mean curvature flow.
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(2) For all D-stopping time 7, conditional to Dyg .}, X~ has uniform law in D.

(8) (Dt)t>0 and (ﬁf),zo have the same law, and in particular (D;)¢>o is a Markov
process, stopped at hitting time of inner or outer skeleton.

(4) If 7 = 7 hitting time of M by Dy, then conditional to Dy -,,j, Xr,, has uniform law
in M

Remark

> A key ingredient for the proof is Stokes theorem
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with hPt mean curvature of level sets of PAD;

LS (X) local time of X; on the skeleton S; of Dy, 65t(X;) the angle between the
skeleton and any of the geodesics from 9D;.

Theorem

(1) 0wi(-) = vt (L(+))- As a consequence v is invariant by the semigroup P; of
(sz Df)!
(2) For all D-stopping time 7, conditional to Dyg ,1, X~ has uniform law in D-.

() (Dt)t>0 and (Dt)tzo have the same law, and in particular (D;)¢>o is a Markov
process, stopped at hitting time of inner or outer skeleton.

Remark
> (2), (3) is a generalization of Pitman 2M — X theorem
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Theorem
(1) For all D-stopping time 7, £(X|Dyo ;) = U
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Mean curvature flow in R? 1
Let us consider the equation doD;(y) = ENDI(y)th(y) dt
> |t is the inverse gradient flow for % the length of the boundary o := u(9Dy);
» Starting from a smooth set, no self intersection of the boundary occurs;
> The solution becomes more and more round (isoperimetric ratio converges to 1)
and shrinks to a point in finite time (Huisken 84, Gage 83, Gage 84,
Gage-Hamilton 86).
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Thanks for your attention
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