La limite super-diffusive de la marche aléatoire de l'éléphant

 Journées de Probabilités, AngersThe elephant random walk

The Elephant Random Walk

The elephant random walk is a random walk on \mathbb{Z}.

The Elephant Random Walk

The elephant random walk is a random walk on \mathbb{Z}.
At time $n=0$

The Elephant Random Walk

The elephant random walk is a random walk on \mathbb{Z}.
At time $n=0$

A time $n=1$

The Elephant Random Walk

Let $n \geq 1$, at time $n+1$, the elephant chooses uniformly at random an instant k among the previous instants.

The Elephant Random Walk

Let $n \geq 1$, at time $n+1$, the elephant chooses uniformly at random an instant k among the previous instants. Then, according to p the memory parameter,

$$
x_{n+1}=\left\{\begin{array}{ccc}
+x_{k} & \text { with probability } & p, \\
-x_{k} & \text { with probability } & 1-p
\end{array}\right.
$$

The position of the elephant is given by

$$
S_{n+1}=S_{n}+X_{n+1} .
$$

The Elephant Random Walk

Let $n \geq 1$, at time $n+1$, the elephant chooses uniformly at random an instant k among the previous instants. Then, according to p the memory parameter,

$$
x_{n+1}=\left\{\begin{array}{ccc}
+x_{k} & \text { with probability } & p \\
-x_{k} & \text { with probability } & 1-p
\end{array}\right.
$$

The position of the elephant is given by

$$
S_{n+1}=S_{n}+X_{n+1} .
$$

A martingale approach

Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Then,

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}=1 \mid \mathcal{F}_{n}\right) & =p \frac{\#\{\text { steps to the right }\}}{n}+(1-p) \frac{\#\{\text { steps to the left }\}}{n} \\
& =p \frac{S_{n}+n}{2 n}+(1-p) \frac{n-S_{n}}{2 n} \\
& =\frac{1}{2}\left(1+(2 p-1) \frac{S_{n}}{n}\right) .
\end{aligned}
$$

A martingale approach

Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Then,

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}=1 \mid \mathcal{F}_{n}\right) & =p \frac{\#\{\text { steps to the right }\}}{n}+(1-p) \frac{\#\{\text { steps to the left }\}}{n} \\
& =p \frac{S_{n}+n}{2 n}+(1-p) \frac{n-S_{n}}{2 n} \\
& =\frac{1}{2}\left(1+(2 p-1) \frac{S_{n}}{n}\right) .
\end{aligned}
$$

The conditionnal distribution of X_{n+1} given the past is

$$
\mathcal{L}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\mathcal{R}\left(p_{n}\right)
$$

where $p_{n}=\frac{1}{2}\left(1+a \frac{S_{n}}{n}\right)$ and $a=2 p-1$.

A martingale approach

We deduce that

$$
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\left(2 p_{n}-1\right)=\left(1+\frac{a}{n}\right) S_{n}=\gamma_{n} S_{n}
$$

A martingale approach

We deduce that

$$
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\left(2 p_{n}-1\right)=\left(1+\frac{a}{n}\right) S_{n}=\gamma_{n} S_{n}
$$

Consequently, we set

$$
M_{n}=a_{n} S_{n}
$$

where $a_{1}=1$ and

$$
a_{n}=\prod_{k=1}^{n-1} \gamma_{k}^{-1}=\frac{\Gamma(a+1) \Gamma(n)}{\Gamma(n+a)}
$$

A martingale approach

We deduce that

$$
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+\left(2 p_{n}-1\right)=\left(1+\frac{a}{n}\right) S_{n}=\gamma_{n} S_{n}
$$

Consequently, we set

$$
M_{n}=a_{n} S_{n}
$$

where $a_{1}=1$ and

$$
a_{n}=\prod_{k=1}^{n-1} \gamma_{k}^{-1}=\frac{\Gamma(a+1) \Gamma(n)}{\Gamma(n+a)}
$$

The process $\left(M_{n}\right)$ is a locally bounded square-integrable martingale. Indeed,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=a_{n+1} \mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=a_{n+1} \gamma_{n} S_{n}=a_{n} S_{n}=M_{n}
$$

and $\mathbb{E}\left[M_{n}^{2}\right] \leq\left(n a_{n}\right)^{2}$.

Three regimes

It is possible tho show that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2}
$$

Three regimes

It is possible tho show that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.

Three regimes

It is possible tho show that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.
Thanks to asymptotical equivalent for the Gamma function, we have that $a_{n}=O\left(n^{-a}\right)$ and we obtain three different regimes for the elephant's behavior :

Three regimes

It is possible tho show that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.
Thanks to asymptotical equivalent for the Gamma function, we have that $a_{n}=O\left(n^{-a}\right)$ and we obtain three different regimes for the elephant's behavior :
, the diffusive regime where $a<1 / 2$ and $v_{n}=O\left(n^{1-2 a}\right)$,

Three regimes

It is possible tho show that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.
Thanks to asymptotical equivalent for the Gamma function, we have that $a_{n}=O\left(n^{-a}\right)$ and we obtain three different regimes for the elephant's behavior :
, the diffusive regime where $a<1 / 2$ and $v_{n}=O\left(n^{1-2 a}\right)$,
, the critical regime where $a=1 / 2$ and $v_{n}=O(\log n)$,

Three regimes

It is possible tho show that

$$
\langle M\rangle_{n}=\sum_{k=1}^{n} a_{k}^{2}-a^{2} \sum_{k=1}^{n} a_{k}^{2}\left(\frac{S_{k}}{k}\right)^{2} .
$$

The asymptotical behavior of $\langle M\rangle_{n}$ is closely related to the one of

$$
v_{n}=\sum_{k=1}^{n} a_{k}^{2}
$$

as $\langle M\rangle_{n}=O\left(v_{n}\right)$ almost surely.
Thanks to asymptotical equivalent for the Gamma function, we have that $a_{n}=O\left(n^{-a}\right)$ and we obtain three different regimes for the elephant's behavior :
, the diffusive regime where $a<1 / 2$ and $v_{n}=O\left(n^{1-2 a}\right)$,
, the critical regime where $a=1 / 2$ and $v_{n}=O(\log n)$,
, the superdiffusive regime where $a>1 / 2$ and $v_{n}=O(1)$.

Main results

Baur and Bertoin 2016, Coletti et al. 2017, Bercu 2018, Kubota and Takei 2019...

Main results

Theorem (Law of large numbers)

$$
\begin{array}{cc}
\text { Diffusive } & \text { Critical } \\
\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \stackrel{\text { a.s. }}{=} 0 & \lim _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n} \log n} \stackrel{\text { a.s. }}{=} 0
\end{array}
$$

Superdiffusive

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{n^{a}} \stackrel{\text { a.s. } / \mathbb{L}^{m}}{=} L_{q}
$$

Theorem (Asymptotic normality)

Diffusive
Critical
$\underset{\sqrt{n}}{S_{n \rightarrow \infty}} \underset{\sqrt{\mathcal{L}}}{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{1-2 a}\right) \quad \frac{S_{n}}{\sqrt{n \log n}} \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}(0,1) \quad \frac{S_{n}-n^{a} L_{q}}{\sqrt{n}} \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{2 a-1}\right)$

Main results

Theorem (Law of large numbers)

$$
\begin{array}{cc}
\text { Critical } & \text { Superdiffusive } \\
\lim _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n} \log n} \stackrel{\text { a.s. }}{=} 0 & \lim _{n \rightarrow \infty} \frac{S_{n}}{n^{a}} \stackrel{\text { a.s. } / \mathbb{L}^{m}}{=} L_{q}
\end{array}
$$

Theorem (Asymptotic normality)

Diffusive
Critical
$\underset{\sqrt{n}}{S_{n \rightarrow \infty}} \underset{\sqrt{\mathcal{L}}}{\mathcal{L}}\left(0, \frac{1}{1-2 a}\right) \quad \frac{S_{n}}{\sqrt{n \log n}} \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}(0,1) \quad \frac{S_{n}-n^{a} L_{q}}{\sqrt{n}} \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{2 a-1}\right)$
Superdiffusive

Theorem

Diffusive

$$
\begin{aligned}
& \left(\frac{S_{\lfloor n t\rfloor}}{\sqrt{n}}, t \geq 0\right) \underset{\substack{n \rightarrow \infty \\
\text { Critical }}}{\Longrightarrow}\left(W_{t}, t \geq 0\right) \\
& \left(\frac{S_{\left\lfloor n^{t}\right\rfloor}}{\sqrt{n^{t} \log n}}, t \geq 0\right) \underset{n \rightarrow \infty}{\Longrightarrow}\left(B_{t}, t \geq 0\right)
\end{aligned}
$$

where W_{t} is a centered gaussian process

$$
\begin{gathered}
\mathbb{E}\left[W_{s} W_{t}\right]=\frac{1}{1-2 a} t^{a} s^{1-a}, \quad 0<s \leq t \\
\text { Superdiffusive }
\end{gathered}
$$

$$
\left(\frac{S_{\lfloor n t\rfloor}}{n^{a}}, t \geq 0\right) \underset{n \rightarrow \infty}{\Longrightarrow}\left(t^{a} L, t \geq 0\right)
$$

Histogram of L when $q=0.5$

Histogram of L when $q=0.3$

New insights on L

Thanks to the connection with random recursive trees on which a Bernoulli bond percolation hase been performed, it holds that :

The distribution of L

$$
L=\sum_{i=1}^{\infty} C_{i} \cdot Z_{i}=C_{1} \cdot \sum_{i=1}^{\infty}\left(\beta_{\tau_{i}}\right)^{a} \cdot Z_{i} .
$$

such that $\left(Z_{i}\right)$ are i.i.d. $\mathcal{R}(1 / 2), C_{1}$ has a Mittag-Leffler distribution with parameter a and C_{i} a random variable with the same law as $\left(\beta_{\tau_{i}}\right)^{a} \cdot C_{1}$, where β_{i} denotes a beta variable with parameter $(1, i-1)$ and is further independent of C_{1}.

An elephant inside an urn ?

A few references

S. Janson - Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Processes and their Applications (2004)
B. Chauvin, C. Mailler, N. Pouyanne - Smoothing equations for large Pólya urns. J. Theoret. Probab (2015)
E. Baur and J. Bertoin - Elephant random walks and their connection to Pólya-type urns. Physical review E (2016)

The ERW and the associated Pólya urn

Let $U(n)=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection :

The ERW and the associated Pólya urn

Let $U(n)=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection :

The ERW and the associated Pólya urn

Let $U(n)=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection :

picking	remembering
1	going right
1	going left

adding	meaning
1	1 step to the right
1	1 step to the left

The ERW and the associated Pólya urn

Let $U(n)=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection :

picking	remembering
1	going right
1	going left

adding	meaning
1	1 step to the right
1	1 step to the left

such that

$$
\text { hat }=\left(\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right), \quad \lambda_{1}=1, \quad \lambda_{2}=2 p-1=a, \quad v_{1}=\binom{1}{1}, \quad v_{2}=\binom{1}{-1} .
$$

The ERW and the associated Pólya urn

Let $U(n)=\binom{R_{n}}{B_{n}}$ be an urn filled with red and blue balls. We make the following connection :

picking	remembering
1	going right
1	going left

adding	meaning
1	1 step to the right
1	1 step to the left

such that

$$
A=\left(\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right), \quad \lambda_{1}=1, \quad \lambda_{2}=2 p-1=a, \quad v_{1}=\binom{1}{1}, \quad v_{2}=\binom{1}{-1} .
$$

In this case, S_{n} has the same distribution as $R_{n}-B_{n}=2 R_{n}-n$.

A few results on the ERW-Pólya urn

Theorem (Janson, 2004)
When $a>1 / 2$ and $U(0)=(\alpha, \beta)^{\top}$, it is true that

$$
\lim _{n \rightarrow \infty} \frac{U(n)-n v_{1}}{n^{a}}=W_{(\alpha, \beta)} v_{2} \quad \text { a.s. }
$$

where $W_{(\alpha, \beta)}$ is a non-degenerate random variable such that $\mathbb{E}\left[W_{(\alpha, \beta)}\right]=\frac{\alpha-\beta}{\Gamma(1+a)}$ and $\mathbb{E}\left[W_{(\alpha, \beta)}^{2}\right]=\frac{1}{(2 a-1) \Gamma(2 a)}$. In particular,

$$
\lim _{n \rightarrow \infty} \frac{R_{n}-B_{n}}{n^{a}}=W_{(\alpha, \beta)} \quad \text { a.s. }
$$

Moreover, we can show that $W_{(1,0)} \stackrel{\text { a.s. }}{=}-W_{(0,1)}$. Hence, it follows that

$$
L_{q} \stackrel{\mathcal{L}}{=} Z_{q} W
$$

where $Z_{q} \sim \mathcal{R}(q)$ is independent of $W:=W_{(1,0)}$.

Urns and trees

with probability $q \bigcirc$
with probability $1-q$

Urns and trees

Urns and trees

At time n,

, $N_{k}(n)$ is the number of leaves of the k-th subtree,
, the number of drawings in the k-th subtree is $N_{k}(n)-1$ (time inside).

Urns and trees

At time n,

, $N_{k}(n)$ is the number of leaves of the k-th subtree,
> the number of drawings in the k-th subtree is $N_{k}(n)-1$ (time inside).
Remember that the balls of the whole urn are uniformly drawn at any time and notice that

Urns and trees

At time n,

, $N_{k}(n)$ is the number of leaves of the k-th subtree,
> the number of drawings in the k-th subtree is $N_{k}(n)-1$ (time inside).
Remember that the balls of the whole urn are uniformly drawn at any time and notice that
, at each drawing in the k-th subtree, $N_{k}(n)$ increases by 1

Urns and trees

At time n,

, $N_{k}(n)$ is the number of leaves of the k-th subtree,
) the number of drawings in the k-th subtree is $N_{k}(n)-1$ (time inside).

Remember that the balls of the whole urn are uniformly drawn at any time and notice that
, at each drawing in the k-th subtree, $N_{k}(n)$ increases by 1
, $\left.N(n)=\left(N_{1}(n), N_{2}(n)\right)\right)$ has exactly the same distribution as the 2-color Pólya urn process having I_{2} as (deterministic) replacement matrix and $(1,1)$ as initial composition.

Distributional equation (1)

Consider simultaneously
, an urn process $N=\left(N_{1}, N_{2}\right)$ having I_{2} as replacement matrix and $(1,1)$ as initial condition,
, two urn processes $U_{(1,0)}^{(1)}$ and $U_{(1,0)}^{(2)}$ having A as mean replacement matrix and $(1,0)$ as initial condition,
, an urn process $U_{(0,1)}^{(2)}$ having A as mean replacement matrix and $(0,1)$ as initial condition,
> a Bernoulli random variable ξ_{p} with parameter p, all these processes being independent of each other.

Distributional equation (1)

Consider simultaneously
, an urn process $N=\left(N_{1}, N_{2}\right)$ having I_{2} as replacement matrix and $(1,1)$ as initial condition,
, two urn processes $U_{(1,0)}^{(1)}$ and $U_{(1,0)}^{(2)}$ having A as mean replacement matrix and $(1,0)$ as initial condition,
, an urn process $U_{(0,1)}^{(2)}$ having A as mean replacement matrix and $(0,1)$ as initial condition,
, a Bernoulli random variable ξ_{p} with parameter p, all these processes being independent of each other.

Then, the process $U_{(1,0)}=\left(U_{(1,0)}(n)\right)_{n}$ has the same distribution as

$$
U_{(1,0)}(n) \stackrel{\mathcal{L}}{=} U_{(1,0)}^{(1)}\left(N_{1}(n)-1\right)
$$

Distributional equation (1)

Consider simultaneously
, an urn process $N=\left(N_{1}, N_{2}\right)$ having I_{2} as replacement matrix and $(1,1)$ as initial condition,
, two urn processes $U_{(1,0)}^{(1)}$ and $U_{(1,0)}^{(2)}$ having A as mean replacement matrix and $(1,0)$ as initial condition,
, an urn process $U_{(0,1)}^{(2)}$ having A as mean replacement matrix and $(0,1)$ as initial condition,
, a Bernoulli random variable ξ_{p} with parameter p, all these processes being independent of each other.

Then, the process $U_{(1,0)}=\left(U_{(1,0)}(n)\right)_{n}$ has the same distribution as

$$
U_{(1,0)}(n) \stackrel{\mathcal{L}}{=} U_{(1,0)}^{(1)}\left(N_{1}(n)-1\right)+\xi_{p} U_{(1,0)}^{(2)}\left(N_{2}(n)-1\right)
$$

Distributional equation (1)

Consider simultaneously

, an urn process $N=\left(N_{1}, N_{2}\right)$ having I_{2} as replacement matrix and $(1,1)$ as initial condition,
, two urn processes $U_{(1,0)}^{(1)}$ and $U_{(1,0)}^{(2)}$ having A as mean replacement matrix and $(1,0)$ as initial condition,
, an urn process $U_{(0,1)}^{(2)}$ having A as mean replacement matrix and $(0,1)$ as initial condition,
, a Bernoulli random variable ξ_{p} with parameter p, all these processes being independent of each other.

Then, the process $U_{(1,0)}=\left(U_{(1,0)}(n)\right)_{n}$ has the same distribution as

$$
U_{(1,0)}(n) \stackrel{\mathcal{L}}{=} U_{(1,0)}^{(1)}\left(N_{1}(n)-1\right)+\xi_{p} U_{(1,0)}^{(2)}\left(N_{2}(n)-1\right)+\left(1-\xi_{p}\right) U_{(0,1)}^{(2)}\left(N_{2}(n)-1\right)
$$

Distributional equation (2)

$$
U_{(1,0)}(n) \stackrel{\mathcal{L}}{=} U_{(1,0)}^{(1)}\left(N_{1}(n)-1\right)+\xi_{p} U_{(1,0)}^{(2)}\left(N_{2}(n)-1\right)+\left(1-\xi_{p}\right) U_{(0,1)}^{(2)}\left(N_{2}(n)-1\right)
$$

Distributional equation (2)

$$
U_{(1,0)}(n) \stackrel{\mathcal{L}}{=} U_{(1,0)}^{(1)}\left(N_{1}(n)-1\right)+\xi_{p} U_{(1,0)}^{(2)}\left(N_{2}(n)-1\right)+\left(1-\xi_{p}\right) U_{(0,1)}^{(2)}\left(N_{2}(n)-1\right)
$$

It is known that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} N_{n}=(V, 1-V) \quad \text { a.s. } \quad \text { where } V \sim \mathcal{U}(0,1)
$$

Distributional equation (2)

$$
U_{(1,0)}(n) \stackrel{\mathcal{L}}{=} U_{(1,0)}^{(1)}\left(N_{1}(n)-1\right)+\xi_{p} U_{(1,0)}^{(2)}\left(N_{2}(n)-1\right)+\left(1-\xi_{p}\right) U_{(0,1)}^{(2)}\left(N_{2}(n)-1\right)
$$

It is known that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} N_{n}=(V, 1-V) \quad \text { a.s. } \quad \text { where } V \sim \mathcal{U}(0,1)
$$

which leads to

$$
\begin{aligned}
W_{(1,0)} & \stackrel{\mathcal{L}}{=} V^{a} W_{(1,0)}^{(1)}+\xi_{p}(1-V)^{a} W_{(1,0)}^{(2)}+\left(1-\xi_{p}\right)(1-V)^{a} W_{(0,1)}^{(2)} \\
& \stackrel{\mathcal{L}}{=} V^{a} W_{(1,0)}^{(1)}+\left(2 \xi_{p}-1\right)(1-V)^{a} W_{(1,0)}^{(2)} .
\end{aligned}
$$

Distributional equation (2)

Theorem (Guérin, L., Raschel - 2023+)
Let $W V_{2}$ be the limit of a large two-color Pólya urn process with random replacement matrix A, initial composition $(0,1)$ and ratio $a>1 / 2$. Then,

$$
W \stackrel{\mathcal{L}}{=} V^{a} W^{(1)}+Z_{p}(1-V)^{a} W^{(2)}
$$

where
, V is a uniformly distributed random variable on $[0,1]$,
, Z_{p} is a Rademacher distributed random variable with parameter p,
, the $W^{(k)}$ are copies of W, all being independent of each other and of V and Z_{p}.

The superdiffusive limit (1)

Recall that $L_{q} \stackrel{\mathcal{L}}{=} Z_{q} W$.
Theorem (2023+)
The random variable L_{q} has a bounded and continuous (class \mathcal{C}^{∞}) density supported by the real line.

The superdiffusive limit (1)

Recall that $L_{q} \stackrel{\mathcal{L}}{=} Z_{q} W$.
Theorem (2023+)
The random variable L_{q} has a bounded and continuous (class \mathcal{C}^{∞}) density supported by the real line.

Idea of proof. We want to show that $\left|\varphi_{w}(t)\right| \underset{ \pm \infty}{=} O\left(\frac{1}{t^{k / a}}\right)$ for any $k \in \mathbb{N}$.

The superdiffusive limit (1)

Recall that $L_{q} \stackrel{\mathcal{L}}{=} Z_{q} W$.
Theorem (2023+)
The random variable L_{q} has a bounded and continuous (class \mathcal{C}^{∞}) density supported by the real line.

Idea of proof. We want to show that $\left|\varphi_{w}(t)\right| \underset{ \pm \infty}{=} O\left(\frac{1}{t^{k / a}}\right)$ for any $k \in \mathbb{N}$.
, $\operatorname{Supp}(W)=\mathbb{R}$

The superdiffusive limit (1)

Recall that $L_{q} \stackrel{\mathcal{L}}{=} Z_{q} W$.
Theorem (2023+)
The random variable L_{q} has a bounded and continuous (class \mathcal{C}^{∞}) density supported by the real line.

Idea of proof. We want to show that $\left|\varphi_{w}(t)\right| \underset{ \pm \infty}{=} O\left(\frac{1}{t^{k / a}}\right)$ for any $k \in \mathbb{N}$.
, $\operatorname{Supp}(W)=\mathbb{R}$
, for any $t \neq 0,\left|\varphi_{w}(t)\right|<1$

The superdiffusive limit (1)

Recall that $L_{q} \stackrel{\mathcal{L}}{=} Z_{q} W$.
Theorem (2023+)
The random variable L_{q} has a bounded and continuous (class \mathcal{C}^{∞}) density supported by the real line.

Idea of proof. We want to show that $\left|\varphi_{w}(t)\right| \underset{ \pm \infty}{=} O\left(\frac{1}{t^{k / a}}\right)$ for any $k \in \mathbb{N}$.
, $\operatorname{Supp}(W)=\mathbb{R}$
, for any $t \neq 0,\left|\varphi_{W}(t)\right|<1$
, $\lim _{t \rightarrow \pm \infty} \varphi_{W}(t)=0$

The superdiffusive limit (1)

Recall that $L_{q} \stackrel{\mathcal{L}}{=} Z_{q} W$.
Theorem (2023+)
The random variable L_{q} has a bounded and continuous (class \mathcal{C}^{∞}) density supported by the real line.

Idea of proof. We want to show that $\left|\varphi_{w}(t)\right| \underset{ \pm \infty}{=} O\left(\frac{1}{t^{k / a}}\right)$ for any $k \in \mathbb{N}$.
, $\operatorname{Supp}(W)=\mathbb{R}$
, for any $t \neq 0,\left|\varphi_{W}(t)\right|<1$
, $\lim _{t \rightarrow \pm \infty} \varphi_{W}(t)=0$
, $\varphi_{W}(t) \underset{ \pm \infty}{=} O\left(t^{-1 / a}\right)$

The superdiffusive limit (2)

Theorem (2023+)

The random variable L satisfies Carleman's criterion and thus, is moments-determined.

The superdiffusive limit (2)

Theorem (2023+)

The random variable L satisfies Carleman's criterion and thus, is moments-determined.

Theorem (2023+)
Let $\left(m_{k}\right)_{k \geq 1}$ be defined by $m_{1}=1$ and, for $k \geq 2$,

$$
m_{k}=\frac{1}{k a-c_{k}} \sum_{j=1}^{k-1} c_{j} m_{j} m_{k-j}
$$

where $c_{k}=1$ for even k and $c_{k}=a$ for odd k. Then, for $k \geq 1$,

$$
\mathbb{E}\left[L_{i}^{k}\right]=\frac{(k-1)!}{a \Gamma(k a)} m_{k}
$$

and the generating-moment function of L_{1} is given by, for $t \in \mathbb{R}$,

$$
\mathbb{E}\left[\mathrm{e}^{t L_{1}}\right]=\sum_{k \geq 0} \frac{m_{k}}{\Gamma(k a+1)} t^{k} .
$$

Merci pour votre attention!

