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Let 7 = o(X1,...,Xp). Then,
#{steps to the right #{steps to the left

n n
n—>S,
2n

P(Xn+1 =N ‘fn):

Sn+n

=p——+(1-p)

e03)

The conditionnal distribution of X141 given the past is
L(Xn+1 | Fn) = R(pn)

(1+a%”) anda=2p—1.

N —

where p, =
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A martingale approach

We deduce that
a

Consequently, we set

Mn =S anSn
where a; = 1and
n—1
0 TTom1 — M@+ r(n)
el r(n+a)

The process (M) is a locally bounded square-integrable martingale. Indeed,
E[Mﬂ+1 | fﬂ] = an+1E[5n+1 | fn] = Un41YnSn = AnSp = My
and E[M2] < (nap)?.
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k=1 k=1
The asymptotical behavior of (M), is closely related to the one of
n
Vn - ZG,Z?
k=1
as (M), = O(v,) almost surely.

Thanks to asymptotical equivalent for the Gamma function, we have that a, = O(n=9)
and we obtain three different regimes for the elephant’s behavior :

» the diffusive regime where a < 1/2 and v, = O(n'=%9),
» the critical regime where a =1/2 and v, = O(log n),
» the superdiffusive regime where a > 1/2 and v, = O(1).



Main results

Baur and Bertoin 2016, Coletti et al. 2017, Bercu 2018, Kubota and Takei 2019...
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New insights on L

Thanks to the connection with random recursive trees on which a Bernoulli bond per-
colation hase been performed, it holds that :

The distribution of L

(e.e]

L=) G-Zi=G-) ()2
=1

i=1

such that (Z;) are i.i.d. R(1/2), C; has a Mittag-Leffler distribution with parameter a and
C; a random variable with the same law as (8-,)? - G4, where f; denotes a beta variable
with parameter (1,7 — 1) and is further independent of ;.

i



An elephant inside an urn ?
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The ERW and the associated Polya urn

Let U(n) = (g”) be an urn filled with red and blue balls. We make the following

n

connection :
picking | remembering adding meaning
(1) going right and (1 1 step to the right
(1) going left (1 1 step to the left

such that ]
A:<1pp pp>, M=1M=2p—1=aq, v1:<1),v2:(11).

In this case, S, has the same distribution as R, — B, = 2R, — n.
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A few results on the ERW-Polya urn

Theorem (Janson, 2004)
When a > 1/2 and U(0) = (a, B)T, it is true that

lim. U(”)n;”‘” = WiV aS.
where W, gy is a non-degenerate random variable such that E[W, g)] = F((11+/f1)
and E[W(aﬁ |= (ZG—J)F(ZG)' In particular,
Rn — Bn

lim = W(a,ﬁ) a.s.

n— o0 na

Moreover, we can show that W, o) = —Wio,1). Hence, it follows that

Lo £ ZgW
where Zq ~ R(q) is independent of W := W, o).



Urns and trees

with probability g @ @ ith probability 1 — g
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Urns and trees

At time n,
» Nr(n) is the number of leaves of the k-th subtree,

» the number of drawings in the k-th subtree is Np(n) — 1
(time inside).

Remember that the balls of the whole urn are uniformly drawn
at any time and notice that

» at each drawing in the kR-th subtree, Np(n) increases by 1

» N(n) = (N1(n), N2(n))) has exactly the same distribution as
the 2-color Polya urn process having I, as (deterministic)
replacement matrix and (1,1) as initial composition.
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Distributional equation (1)
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» an urn process Ugé%) having A as mean replacement
matrix and (0, 1) as initial condition,
> a Bernoulli random variable &, with parameter p,

all these processes being independent of each other.
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Distributional equation (1)

Consider simultaneously

» an urn process N = (N4, Np) having I, as replacement
matrix and (1,1) as initial condition,
> two urn processes US_)O) and Ugf_)o) having A as mean
p 1-p replacement matrix and (1, 0) as initial condition,

» an urn process UE?U having A as mean replacement
matrix and (0, 1) as initial condition,
> a Bernoulli random variable &, with parameter p,

all these processes being independent of each other.

Then, the process U 0y = (U(1,00(n))n has the same distribution as

Ua,oy(n) = Uy ( )+ EUD, (Na(n) — 1) + (1 = £)US, (Na(n) — 7).
(1,0) (1,0) (0,1)
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Distributional equation (2)

Unoy(n) £ Uy ( ) + &U( ) (Na(n) = 1) + (1 = &)Uk, (Na() = 1)

It is known that
lim 1Nn =(V,1=V) as. whereV ~1(0,1)
which leads to
2
W,0) W((ww.)o) +&(1 - V)GW((wz.)o) +(1=6)(1 - V)GW((O,)U
(1
(1

2
by + (2 = N1 = V)W, .



Distributional equation (2)

Theorem (Guérin, L., Raschel - 2023+)

Let Wv, be the limit of a large two-color Polya urn process with random replacement
matrix A, initial composition (0,1) and ratio a > 1/2. Then,

w £ vaw® 4 z,(1 - v)Tw®@
where

» V is a uniformly distributed random variable on [0, 1],
» Zp Is a Rademacher distributed random variable with parameter p,

> the W) are copies of W, all being independent of each other and of V and Z,.
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The superdiffusive limit (1)

Recall that Lgq £ ZgW.

Theorem (2023+)

The random variable Lq has a bounded and continuous (class C*) density
supported by the real line.

1

Idea of proof. We want to show that |y (1) = O(tf?/ﬂ

) forany ke N.

» Supp(W) =R

» forany t # 0, |ew(t)| <1
’ I~I>I:Too pr(t) =0

> pu(t) = 0(t)
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The random variable L satisfies Carleman’s criterion and thus, is
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The superdiffusive limit (2)

Theorem (2023+)
The random variable L satisfies Carleman’s criterion and thus, is
moments-determined.
Theorem (2023+)
Let (mg)r>1 be defined by my =1 and, for k > 2,
.
My = ka—cr ; CiMjMe—j,

where ¢, = 1 for even k and ¢, = a for odd k. Then, for k > 1,
(R=1)!
[ 1] Gr(/?a) Mg,
and the generating-moment function of Ly is g/ven by, fort e R,
E tlq
[ = Z I( I?a +1

k>0
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Merci pour votre attention !
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