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The elephant random walk



The Elephant Random Walk

The elephant random walk is a random walk on Z.

At time n = 0
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The Elephant Random Walk

Let n ≥ 1, at time n+ 1, the elephant chooses uniformly at random an instant k among

the previous instants.

Then, according to p the memory parameter,

Xn+1 =

 +Xk with probability p,

−Xk with probability 1− p.

The position of the elephant is given by

Sn+1 = Sn + Xn+1.

0 1 Sn

p1− p

1− pp

(Xk = −1) (Xk = +1)
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A martingale approach

Let Fn = σ(X1, . . . , Xn). Then,

P(Xn+1 = 1 | Fn) = p
#{steps to the right}

n
+ (1− p)

#{steps to the left}
n

= p
Sn + n

2n
+ (1− p)

n− Sn

2n

=
1

2

(
1+ (2p− 1)

Sn

n

)
.

The conditionnal distribution of Xn+1 given the past is

L(Xn+1 | Fn) = R(pn)

where pn =
1

2

(
1+ a

Sn

n

)
and a = 2p− 1.
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A martingale approach

We deduce that

E[Sn+1 | Fn] = Sn + E[Xn+1 | Fn] = Sn + (2pn − 1) =
(
1+

a

n

)
Sn = γnSn.

Consequently, we set

Mn = anSn

where a1 = 1 and

an =
n−1∏
k=1

γ−1
k

=
Γ(a+ 1)Γ(n)

Γ(n+ a)
.

The process (Mn) is a locally bounded square-integrable martingale. Indeed,

E[Mn+1 | Fn] = an+1E[Sn+1 | Fn] = an+1γnSn = anSn = Mn

and E[M2
n] ≤ (nan)

2.
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Three regimes

It is possible tho show that

〈M〉n =
n∑

k=1

a2k − a2
n∑

k=1

a2k

(Sk
k

)2
.

The asymptotical behavior of 〈M〉n is closely related to the one of

vn =
n∑

k=1

a2k

as 〈M〉n = O(vn) almost surely.

Thanks to asymptotical equivalent for the Gamma function, we have that an = O(n−a)

and we obtain three different regimes for the elephant’s behavior :

› the diffusive regime where a < 1/2 and vn = O(n1−2a),

› the critical regime where a = 1/2 and vn = O(log n),

› the superdiffusive regime where a > 1/2 and vn = O(1).
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Main results

Baur and Bertoin 2016, Coletti et al. 2017, Bercu 2018, Kubota and Takei 2019...

Theorem (Law of large numbers)

Diffusive

lim
n→∞

Sn

n

a.s.
= 0

Critical

lim
n→∞

Sn√
n log n

a.s.
= 0

Superdiffusive

lim
n→∞

Sn

na
a.s./Lm

= Lq

Theorem (Asymptotic normality)

Diffusive

Sn√
n

L−→
n→∞

N
(
0,

1

1− 2a

) Critical

Sn√
n log n

L−→
n→∞

N
(
0, 1
) Superdiffusive

Sn − naLq√
n

L−→
n→∞

N
(
0,

1

2a− 1

)
Theorem

Diffusive(Sbntc√
n
, t ≥ 0

)
=⇒
n→∞

(Wt, t ≥ 0)

where Wt is a centered gaussian process

E[WsWt] =
1

1− 2a
t
a
s
1−a, 0 < s ≤ t

Critical( Sbntc√
nt log n

, t ≥ 0
)

=⇒
n→∞

(Bt, t ≥ 0)

Superdiffusive(Sbntc
na

, t ≥ 0
)

=⇒
n→∞

(taL, t ≥ 0)
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Histogram of L when q = 0.5
9



Histogram of L when q = 0.3
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New insights on L

Thanks to the connection with random recursive trees on which a Bernoulli bond per-

colation hase been performed, it holds that :

The distribution of L

L =
∞∑
i=1

Ci · Zi = C1 ·
∞∑
i=1

(βτi)
a · Zi.

such that (Zi) are i.i.d.R(1/2), C1 has a Mittag-Leffler distribution with parameter a and

Ci a random variable with the same law as (βτi)
a · C1, where βi denotes a beta variable

with parameter (1, i− 1) and is further independent of C1.

11



An elephant inside an urn ?



A few references

S. Janson – Functional limit theorems for multitype branching processes and general-

ized Pólya urns. Stochastic Processes and their Applications (2004)

B. Chauvin, C. Mailler, N. Pouyanne – Smoothing equations for large Pólya urns. J.

Theoret. Probab (2015)

E. Baur and J. Bertoin – Elephant random walks and their connection to Pólya-type

urns. Physical review E (2016)
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The ERW and the associated Pólya urn

Let U(n) =

(
Rn

Bn

)
be an urn filled with red and blue balls. We make the following

connection :

picking remembering

1 going right

1 going left

and

adding meaning

1 1 step to the right

1 1 step to the left

such that

A =

(
p 1− p

1− p p

)
, λ1 = 1, λ2 = 2p− 1 = a, v1 =

(
1

1

)
, v2 =

(
1

−1

)
.

In this case, Sn has the same distribution as Rn − Bn = 2Rn − n.

13



The ERW and the associated Pólya urn

Let U(n) =

(
Rn

Bn

)
be an urn filled with red and blue balls. We make the following

connection :

picking remembering

1 going right

1 going left

and

adding meaning

1 1 step to the right

1 1 step to the left

such that

A =

(
p 1− p

1− p p

)
, λ1 = 1, λ2 = 2p− 1 = a, v1 =

(
1

1

)
, v2 =

(
1

−1

)
.

In this case, Sn has the same distribution as Rn − Bn = 2Rn − n.

13



The ERW and the associated Pólya urn

Let U(n) =

(
Rn

Bn

)
be an urn filled with red and blue balls. We make the following

connection :

picking remembering

1 going right

1 going left

and

adding meaning

1 1 step to the right

1 1 step to the left

such that

A =

(
p 1− p

1− p p

)
, λ1 = 1, λ2 = 2p− 1 = a, v1 =

(
1

1

)
, v2 =

(
1

−1

)
.

In this case, Sn has the same distribution as Rn − Bn = 2Rn − n.

13



The ERW and the associated Pólya urn

Let U(n) =

(
Rn

Bn

)
be an urn filled with red and blue balls. We make the following

connection :

picking remembering

1 going right

1 going left

and

adding meaning

1 1 step to the right

1 1 step to the left

such that

A =

(
p 1− p

1− p p

)
, λ1 = 1, λ2 = 2p− 1 = a, v1 =

(
1

1

)
, v2 =

(
1

−1

)
.

In this case, Sn has the same distribution as Rn − Bn = 2Rn − n.

13



The ERW and the associated Pólya urn

Let U(n) =

(
Rn

Bn

)
be an urn filled with red and blue balls. We make the following

connection :

picking remembering

1 going right

1 going left

and

adding meaning

1 1 step to the right

1 1 step to the left

such that

A =

(
p 1− p

1− p p

)
, λ1 = 1, λ2 = 2p− 1 = a, v1 =

(
1

1

)
, v2 =

(
1

−1

)
.

In this case, Sn has the same distribution as Rn − Bn = 2Rn − n.

13



A few results on the ERW-Pólya urn

Theorem (Janson, 2004)

When a > 1/2 and U(0) = (α, β)T , it is true that

lim
n→∞

U(n)− nv1

na
= W(α,β)v2 a.s.

where W(α,β) is a non-degenerate random variable such that E[W(α,β)] =
α− β

Γ(1+ a)

and E[W2
(α,β)] =

1

(2a− 1)Γ(2a)
. In particular,

lim
n→∞

Rn − Bn

na
= W(α,β) a.s.

Moreover, we can show that W(1,0)
a.s.
= −W(0,1). Hence, it follows that

Lq
L
= ZqW

where Zq ∼ R(q) is independent of W := W(1,0).

14



Urns and trees

with probability q with probability 1− q

At time n,

› Nk(n) is the number of leaves of the k-th subtree,

› the number of drawings in the k-th subtree is Nk(n)− 1

(time inside).

Remember that the balls of the whole urn are uniformly drawn

at any time and notice that

› at each drawing in the k-th subtree, Nk(n) increases by 1

› N(n) = (N1(n),N2(n))) has exactly the same distribution as

the 2-color Pólya urn process having I2 as (deterministic)

replacement matrix and (1, 1) as initial composition.

15
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Distributional equation (1)

p 1 − p

Consider simultaneously

› an urn process N = (N1,N2) having I2 as replacement

matrix and (1, 1) as initial condition,

› two urn processes U
(1)
(1,0) and U

(2)
(1,0) having A as mean

replacement matrix and (1, 0) as initial condition,

› an urn process U
(2)
(0,1) having A as mean replacement

matrix and (0, 1) as initial condition,

› a Bernoulli random variable ξp with parameter p,

all these processes being independent of each other.

Then, the process U(1,0) = (U(1,0)(n))n has the same distribution as

U(1,0)(n)
L
= U

(1)
(1,0)

(
N1(n)− 1

)
+ ξpU

(2)
(1,0)

(
N2(n)− 1

)
+ (1− ξp)U

(2)
(0,1)

(
N2(n)− 1

)
.
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all these processes being independent of each other.

Then, the process U(1,0) = (U(1,0)(n))n has the same distribution as

U(1,0)(n)
L
= U

(1)
(1,0)

(
N1(n)− 1

)
+ ξpU

(2)
(1,0)

(
N2(n)− 1

)
+ (1− ξp)U

(2)
(0,1)

(
N2(n)− 1

)
.
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Distributional equation (2)

U(1,0)(n)
L
= U

(1)
(1,0)

(
N1(n)− 1

)
+ ξpU

(2)
(1,0)

(
N2(n)− 1

)
+ (1− ξp)U

(2)
(0,1)

(
N2(n)− 1

)

It is known that

lim
n→∞

1

n
Nn = (V, 1− V) a.s. where V ∼ U(0, 1)

which leads to

W(1,0)
L
= VaW

(1)
(1,0) + ξp(1− V)aW

(2)
(1,0) + (1− ξp)(1− V)aW

(2)
(0,1)

L
= VaW

(1)
(1,0) + (2ξp − 1)(1− V)aW

(2)
(1,0).

17



Distributional equation (2)

U(1,0)(n)
L
= U

(1)
(1,0)

(
N1(n)− 1

)
+ ξpU

(2)
(1,0)

(
N2(n)− 1

)
+ (1− ξp)U

(2)
(0,1)

(
N2(n)− 1

)

It is known that

lim
n→∞

1

n
Nn = (V, 1− V) a.s. where V ∼ U(0, 1)

which leads to

W(1,0)
L
= VaW

(1)
(1,0) + ξp(1− V)aW

(2)
(1,0) + (1− ξp)(1− V)aW

(2)
(0,1)

L
= VaW

(1)
(1,0) + (2ξp − 1)(1− V)aW

(2)
(1,0).

17



Distributional equation (2)

U(1,0)(n)
L
= U

(1)
(1,0)

(
N1(n)− 1

)
+ ξpU

(2)
(1,0)

(
N2(n)− 1

)
+ (1− ξp)U

(2)
(0,1)

(
N2(n)− 1

)

It is known that

lim
n→∞

1

n
Nn = (V, 1− V) a.s. where V ∼ U(0, 1)

which leads to

W(1,0)
L
= VaW

(1)
(1,0) + ξp(1− V)aW

(2)
(1,0) + (1− ξp)(1− V)aW

(2)
(0,1)

L
= VaW

(1)
(1,0) + (2ξp − 1)(1− V)aW

(2)
(1,0).

17



Distributional equation (2)

Theorem (Guérin, L., Raschel – 2023+)

Let Wv2 be the limit of a large two-color Pólya urn process with random replacement

matrix A, initial composition (0, 1) and ratio a > 1/2. Then,

W
L
= VaW(1) + Zp(1− V)aW(2)

where

› V is a uniformly distributed random variable on [0, 1],

› Zp is a Rademacher distributed random variable with parameter p,

› the W(k) are copies of W, all being independent of each other and of V and Zp.

17



The superdiffusive limit (1)

Recall that Lq
L
= ZqW.

Theorem (2023+)

The random variable Lq has a bounded and continuous (class C∞) density

supported by the real line.

Idea of proof. We want to show that |ϕw(t)| =
±∞

O(
1

tk/a
) for any k ∈ N.

› Supp(W) = R

› for any t 6= 0, |ϕW(t)| < 1

› lim
t→±∞

ϕW(t) = 0

› ϕW(t) =
±∞

O(t−1/a)
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The superdiffusive limit (2)

Theorem (2023+)

The random variable L satisfies Carleman’s criterion and thus, is

moments-determined.

Theorem (2023+)

Let (mk)k≥1 be defined by m1 = 1 and, for k ≥ 2,

mk =
1

ka− ck

k−1∑
j=1

cjmjmk−j,

where ck = 1 for even k and ck = a for odd k. Then, for k ≥ 1,

E[Lk1 ] =
(k− 1)!

aΓ(ka)
mk,

and the generating-moment function of L1 is given by, for t ∈ R,

E[etL1 ] =
∑
k≥0

mk

Γ(ka+ 1)
tk.
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Merci pour votre attention !
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