Limit for sequences of large dense weighted graphs and Probabillity-graphons

Julien Weibel with Romain Abraham and Jean-François Delmas

Institut Denis Poisson - Université d'Orléans

23 juin 2023, Angers Journées des Probabilités 2023 Large dense graphs and real-valued graphons Definitions and properties of probability-graphons

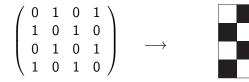
Introduction

- Large graphs and weighted graphs are ubiquitous
- Theory of real-valued graphons (short for graph functions) developed to study limits of large graphs
- In this talk: adaptation of this theory to large weighted graphs
- To this end, new objects: probability-graphons

Large dense graphs and their representation

A large dense graph is a finite (non-directed) graph G with a number of vertices n large, and a number of edges $\Omega(n^2)$.

The adjacency matrix is transformed through scaling into a "pixel picture" map on $[0, 1]^2$.



Large dense graphs and real-valued graphons Definitions and properties of probability-graphons

Some examples of convergence

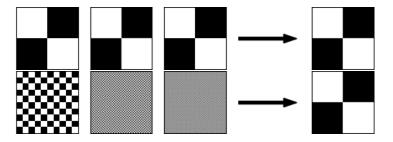
Erdos-Renyi graphs:

Growing uniform attachement graphs:

Large dense graphs and real-valued graphons Definitions and properties of probability-graphons

The limit may depend on the labeling

Bipartite graphs with different labeling of the vertices:



Real-valued graphons and the cut distance

• A real-valued graphon is a symmetric measurable function $w: [0,1]^2 \rightarrow [0,1].$

For two "vertices" $x, y \in [0, 1]$, w(x, y) corresponds to the average edge density between x and y.

Real-valued graphons and the cut distance

• A real-valued graphon is a symmetric measurable function $w : [0,1]^2 \rightarrow [0,1].$

For two "vertices" $x, y \in [0, 1]$, w(x, y) corresponds to the average edge density between x and y.

• The cut distance is defined as:

 $\delta_{\Box,\mathbb{R}}(w,u) = \inf_{\varphi,\psi} \sup_{S,T\subset[0,1]} \left| \int_{S\times T} w(\varphi(x),\varphi(y)) - u(\psi(x),\psi(y)) \, \mathrm{d}x \mathrm{d}y \right|,$

where $\varphi,\psi:[0,1]\rightarrow[0,1]$ are measure-preserving maps.

Large dense graphs and real-valued graphons Definitions and properties of probability-graphons

Main results for real-valued graphons

Theorem 1

Every real-valued graphon is a $\delta_{\Box,\mathbb{R}}$ -limit of a sequence of finite graphs.

Theorem 2

The space of real-valued graphons equipped with the distance $\delta_{\Box,\mathbb{R}}$ is compact.

Sampling from real-valued graphons

Let X_1, \ldots, X_k be iid random variables uniformly distributed over [0, 1].

Define the random graph $\mathbb{G}(k, w)$ with k vertices and each edge ij is independently present with probability $w(X_i, X_j)$.

Sampling from real-valued graphons

Let X_1, \ldots, X_k be iid random variables uniformly distributed over [0, 1].

Define the random graph $\mathbb{G}(k, w)$ with k vertices and each edge ij is independently present with probability $w(X_i, X_j)$.

Theorem 3

Let $(w_n)_{n \in \mathbb{N}}$ and w be real-valued graphons. The following properties are equivalent:

$$lim_{n\to\infty}\,\delta_{\Box,\mathbb{R}}(w_n,w)=0.$$

Weighted graphs

A weighted graph is a complete directed graph (V, E) with a decoration map M that associates to each edge e in E a decoration z in a Polish space **Z**.

Missing edges may be represented as an edge with decoration ∂ , where $\partial \in \mathbf{Z}$ is a cemetery point.

Important cases: $\mathbf{Z} = \mathbb{R}$ or \mathbb{R}^d or \mathbb{N} (here $\partial = 0$).

Definition of probability-graphons

A probability-graphon is a map W from $[0,1]^2$ to $\mathcal{M}_1(\mathbf{Z})$ such that:

- W is a probability measure in dz: for every $(x, y) \in [0, 1]^2$, $W(x, y; \cdot)$ belongs to the set of probability measures $\mathcal{M}_1(\mathbb{Z})$.
- W is measurable in (x, y): for every measurable set A ⊂ Z, the function (x, y) → W(x, y; A) defined on [0, 1]² is measurable.

Definition of probability-graphons

A probability-graphon is a map W from $[0,1]^2$ to $\mathcal{M}_1(\mathbf{Z})$ such that:

- W is a probability measure in dz: for every $(x, y) \in [0, 1]^2$, $W(x, y; \cdot)$ belongs to the set of probability measures $\mathcal{M}_1(\mathbb{Z})$.
- W is measurable in (x, y): for every measurable set A ⊂ Z, the function (x, y) → W(x, y; A) defined on [0, 1]² is measurable.

Denote by \widetilde{W}_1 the space of probability-graphons where we identify W, U if there exist measure-preserving maps $\varphi, \psi : [0, 1] \rightarrow [0, 1]$ such that $W(\varphi(x), \varphi(y); \cdot) = U((\psi(x), \psi(y); \cdot))$ almost everywhere.

Remark: $\mathbf{Z} = \{0,1\}, W(x,y;\cdot) = w(x,y)\delta_1 + (1 - w(x,y))\delta_0$

The cut distance for probability-graphons

Let d_m be a distance that generates the weak topology on the space of sub-probability measures $\mathcal{M}_{<1}(\mathbf{Z})$.

For $S, T \subset [0, 1]$, define the sub-probability measure $W(S, T; \cdot) = \int_{S \times T} W(x, y; \cdot) dx dy$.

• The *cut distance* for probability-graphons is defined as:

$$\delta_{\Box,\mathrm{m}}(W,U) = \inf_{\varphi,\psi} \sup_{S,T \subset [0,1]} d_{\mathrm{m}}(W(\varphi(S),\varphi(T);\cdot), U(\psi(S),\psi(T);\cdot)),$$

where $\varphi,\psi:[\mathbf{0},\mathbf{1}]\rightarrow[\mathbf{0},\mathbf{1}]$ are measure-preserving maps.

The cut distance for probability-graphons

Let d_m be a distance that generates the weak topology on the space of sub-probability measures $\mathcal{M}_{<1}(\mathbf{Z})$.

For $S, T \subset [0, 1]$, define the sub-probability measure $W(S, T; \cdot) = \int_{S \times T} W(x, y; \cdot) dx dy$.

• The *cut distance* for probability-graphons is defined as:

$$\delta_{\Box,\mathrm{m}}(W,U) = \inf_{\varphi,\psi} \sup_{S,T \subset [0,1]} d_{\mathrm{m}}(W(\varphi(S),\varphi(T);\cdot), U(\psi(S),\psi(T);\cdot)),$$

where $\varphi,\psi:[0,1]\rightarrow[0,1]$ are measure-preserving maps.

Theorem 4 (\mathcal{W}_1 is a Polish space)

If d_m is complete, then $(\widetilde{\mathcal{W}}_1, \delta_{\Box,m})$ is a Polish space.

Large dense graphs and real-valued graphons Definitions and properties of probability-graphons

Main results for probability-graphons

A subset of probability-graphons \mathcal{K} is said to be tight if the subset of probability measures $\{M_W : W \in \mathcal{K}\} \subset \mathcal{M}_1(\mathbf{Z})$ is tight, where:

$$M_W(dz) = W([0,1]^2; dz) = \int_{[0,1]^2} W(x,y; dz) dxdy.$$

Theorem 5 (Compactness theorem for W_1)

If a sequence of probability-graphons is tight, then it has a subsequence converging for $\delta_{\Box,m}$. If **Z** is compact, then the space $(\widetilde{W}_1, \delta_{\Box,m})$ is compact.

Main results for probability-graphons

A subset of probability-graphons \mathcal{K} is said to be tight if the subset of probability measures $\{M_W : W \in \mathcal{K}\} \subset \mathcal{M}_1(\mathbf{Z})$ is tight, where:

$$M_W(\mathrm{d} z) = W([0,1]^2;\mathrm{d} z) = \int_{[0,1]^2} W(x,y;\mathrm{d} z) \,\mathrm{d} x \mathrm{d} y.$$

Theorem 5 (Compactness theorem for \widetilde{W}_1)

If a sequence of probability-graphons is tight, then it has a subsequence converging for $\delta_{\Box,m}$. If **Z** is compact, then the space $(\widetilde{W}_1, \delta_{\Box,m})$ is compact.

Theorem 6 (Equivalence of topologies induced by $\delta_{\Box,\mathrm{m}}$ on $\mathcal{W}_1)$

The topology on $\widetilde{\mathcal{W}}_1$ induced by the distance $\delta_{\Box,m}$ does not depend on the choice of the distance d_m on $\mathcal{M}_{\leq 1}(\mathbf{Z})$, as long as d_m satisfies some mild hypothesis (H).

Sampling from probability-graphons

Let X_1, \ldots, X_k be iid random variables uniformly distributed over [0, 1].

Define the random weighted graph $\mathbb{G}(k, W)$ with k vertices and each edge *ij* is independently decorated with a random decoration distributed according to $W(X_i, X_j; \cdot)$.

Sampling from probability-graphons

Let X_1, \ldots, X_k be iid random variables uniformly distributed over [0, 1].

Define the random weighted graph $\mathbb{G}(k, W)$ with k vertices and each edge *ij* is independently decorated with a random decoration distributed according to $W(X_i, X_j; \cdot)$.

Theorem 7 (Characterization of the topology induced by $\delta_{\Box,\mathrm{m}})$

Let $(W_n)_{n \in \mathbb{N}}$ and W be probability-graphons from \widetilde{W}_1 . The following properties are equivalent:

- For every k ≥ 2, the sequence of random graphs (𝔅(k, W_n))_{n∈ℕ} converges in distribution to 𝔅(k, W).
- lim_{n→∞} δ_{□,m}(W_n, W) = 0 for some (and hence for every) choice of the distance d_m on M_{≤1}(Z) that satisfies hypothesis (H).

Large dense graphs and real-valued graphons Definitions and properties of probability-graphons

Thank you for your attention!