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University of Warwick & The Alan Turing Institute

Journées de Probabilités, Angers, France, 22 juin 2023



Figure: Path of a Brownian motion on [0, 1] and the convex minorant C of its graph.
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Theorem 1.1 (Pitman, Uribe Bravo [5] and G. C., Mijatović [4])

Let X be independent of the stick-breaking process ℓ on [0,T ], i.e. for iid Un ∼ U(0, 1),
L0 = T , Ln = Ln−1Un, ℓn = Ln−1 − Ln for n ∈ N:

0
L0 = T

Then the faces of the convex minorant of X , sampled in a length-size-biased way (uniformly at
random), have the same law as the sequence (ℓn, ξn), n ∈ N, where, given ℓ, the variables
ξn = XLn−1 − XLn ∼ F (ℓn, ·), n ∈ N, are independent (here F (t, dx) = P(X t ∈ dx) for
(t, x) ∈ (0,∞)× R).
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Figure: Path of a Brownian motion on [0, 1] and the convex minorant of its graph.
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Figure: Path of a Lévy process on [0, 1] and the convex hull of its graph. (Cauchy case studied in [3])
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Piecewise linear convex function and associated set of slopes
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Figure: Piecewise linear convex function C (8 faces)

and corresponding set of slopes S
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Left, right and two-sided accumulation points of S

Denote by L−(S) (resp. L+(S)) the set of all left (resp. right) limit points of S ⊂ R.

0.9 1.1 1.3

0.5 1.0 1.5 2.0

0.4 0.8 1.2 1.6

Let L(S) := L−(S) ∪ L+(S) be the (closed) set of all limit points of S.
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Theorem 1 (B, González Cázares, Mijatović)

For any measurable set I ⊆ R, the set S ∩ I is either a.s. finite or a.s. infinite. Moreover, the
cardinality |S ∩ I | of the intersection S ∩ I is infinite a.s. if and only if∫ 1

0
P(Xt/t ∈ I )

dt

t
=∞. (1)

Corollary 1

The limit set L(S) is deterministic a.s.

Theorem 2

The boundary of the convex hull of the graph t 7→ (t,Xt), t ∈ [0,T ], of a path of any Lévy
process X is continuously differentiable (as a closed curve in R2) a.s. if and only if (1) holds
for all intervals I in R. Moreover, this is equivalent to the set S being dense in R a.s.

Main theorem
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process X is continuously differentiable (as a closed curve in R2) a.s. if and only if (1) holds
for all intervals I in R. Moreover, this is equivalent to the set S being dense in R a.s.

Main theorem
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Finite variation X – results

Let ψ(u) = logEe iuX1 = iuγ0 +
∫
R(e

iux − 1)ν(dx) be the Lévy-Khintchine exponent of X .

Lévy process X
Derivative C ′ and the limt set

L(S)

Finite variation
(FV)

C ′ bounded below and above;
C ′ discontinuous on boundary
∂Ir , ∀r ∈ S; L(S) = {γ0},

where γ0 = limt↓0 Xt/t a.s., and
γ0 /∈ S

Behaviour depends on I− :=
∫ 1
0 P(Xt/t < γ0)

dt
t , I+ :=

∫ 1
0 P(Xt/t > γ0)

dt
t via

L±(S) = {γ0}
Thm 1⇐⇒ I± =∞ [2]⇐⇒

∫
(−1,1)

max{±x , 0}∫ max{±x ,0}
0 ν∓(y)dy

ν(dx) =∞,

where ν+(x) := ν((x ,∞)) & ν−(x) := ν((−∞,−x)), x > 0, and ∓ := −(±).

Finite variation (FV)
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Convex minorant C (of an FV Lévy process) and its derivative C ′
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Infinite variation X – results
Recall ψ(u) = logEe iuX1 is the Lévy-Khintchine exponent of X and define

s1(r) :=

∫
R
ℜ 1

1 + iur − ψ(u)
du ∈ (0,∞], r ∈ R. Then for all a < b:

∫ b

a
s1(r)dr <∞ if and only if

∫ 1

0
P(Xt/t ∈ (a, b))

dt

t
<∞.

Lévy process X
Derivative C ′ and the limit set

L(S)

s1 ∈ L1loc(r),
∀r ∈ R

C ′ discontinuous on boundary
∂Ir , ∀r ∈ S; − limt↓0 C

′(t) =
limt↑T C ′(t) =∞; L(S) = ∅

s1(r) =∞,
∀r ∈ R

C ′ is continuous on (0,T );
− limt↓0 C

′(t) = limt↑T C ′(t) =
∞; L(S) = R

Infinite variation (IV)
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Infinite variation X – results

Recall ψ(u) = logEe iuX1 is the Lévy-Khintchine exponent of X and define

0 < s1(r) =
1

2π

∫
R
ℜ 1

1 + iur − ψ(u)
du ≤ ∞, r ∈ R.

Smoothness of hull of X at r ←→ hitting of points and ∃ local time of X (r) = (Xt − r t)t≥0

Proposition 1

r ∈ L(S) ⇐⇒ s1 /∈ L1loc(r) (i.e. s1 not integrable on any neighbourhood of r ∈ R).

We know that s1(r) <∞ is equivalent to:

* (Xt − r t)t≥0 hits points

* 0 is regular and instantaneous for (Xt − r t)t≥0

* (Xt − r t)t≥0 has local time at 0

Can these properties depend on r?

Infinite variation (IV)
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Figure: X of infinite variation (IV). Left: C ; right: C ′

How can we tell which case it is in terms of the local behaviour of the paths of X?
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Abrupt (A) & Strongly Eroded (SE) Lévy processes
Denote Xt− := lims↑t Xs and define the left and right Dini derivatives:

D↑
t := lim supε↑0(Xt+ε − Xt−)/ε and D↓

t := lim infε↓0(Xt+ε − Xt)/ε.

If D↑
t = −∞ and D↓

t =∞ at every local minimum t of an IV process X , then Vigon [6] calls
X abrupt.

Proposition 2

A Lévy process X is abrupt if and only if L(S) = ∅ a.s.

Infinite variation (IV)
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Proposition 3

A Lévy process X is strongly eroded if and only if L(S) = R a.s.

Infinite variation (IV)



A conjectural dichotomy for IV Lévy processes
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Figure: Convex minorant and its right derivative of an IV Lévy process X
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A conjectural dichotomy

Conjecture 1

Any IV Lévy process is either A or SE. Equivalently, either s1 ∈ L1loc(r), ∀r ∈ R, or s1 =∞ a.e.

Geometrically, either the Lévy process shoots away from the convex minorant as soon as it
touches it, or it stays close to the convex minorant when it touches it. Conjecture 1 is implied
by Vigon’s point-hitting conjecture:

Conjecture 2 ([7, Conject. 1.6])

Let X be an infinite variation process and for any r ∈ R define the Lévy process
X (r) = (Xt − r t)t≥0. Then the following statements are equivalent.
(i) There exists some r ∈ R such that the process X (r) hits points.

(⇐⇒ s1(r) <∞.)

(ii) For all r ∈ R the process X (r) hits points.

(⇐⇒ s1(r) <∞, ∀r ∈ R.)

(iii) The process X is abrupt.

(⇐⇒ s1 ∈ L1loc(r), ∀r ∈ R.)
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Infinite variation X – results

The set of slopes S is unbounded on both sides for any X of IV, i.e. supS = − inf S =∞,
and hence − limt↓0 C

′(t) = limt↑T C ′(t) =∞ a.s.

Any SE (resp. A) process, when perturbed by a finite variation process, is still SE (resp. A).

Proposition 4

Suppose X = Y + Z for (possibly dependent) Lévy processes Y and Z . Let SX and SZ be the
sets of slopes of the faces of the convex minorants of X and Z , respectively. If Y is of FV
(possibly finite activity) with natural drift b, then L(SX ) = L(SZ ) + b.

Recipe to construct many SE and A processes!
Let Z be standard Cauchy process, which is SE since law of Zt/t does not depend on t (first
proved by Bertoin [3])

Infinite variation (IV)



Too much asymmetry breaks smoothness

Proposition 5

If X is IV with ν((−y ,−x ]) ≥ cν([x , y)) for some c > 1 and and all 0 < x < y close to zero,
then L(S) = ∅ a.s. making X abrupt.

Example:
Weakly 1-stable process, i.e. ν((−∞,−x)) = c−x

−1 and ν((x ,∞)) = c+x
−1 for all x > 0 and

some c+ ̸= c−.

Infinite variation (IV)



Sufficient conditions for X to be strongly eroded (or abrupt)

Corollary 2

Let X be a Lévy process of IV with eψ(u) = Ee iuX1 , u ∈ R.
(i) If lim supu→∞ |ψ(u)/u| <∞, then X is SE.
(ii) If limu→∞ |ψ(u)/u| =∞, then X is either A or SE.

In fact, if lim infu→∞ |ψ(u)/u1+ε| > 0 for some ε > 0, then X is A.

Most Lévy processes are included! Examples:

(a) Any process attracted to an α-stable process in small-time with α ∈ (1, 2];

(b) 1-semi-stable processes is SE if it is strictly 1-semi-stable and otherwise it is A.

It excludes Lévy processes with lim inf |u|→∞ |ψ(u)/u| <∞ = lim sup|u|→∞ |ψ(u)/u|, e.g.,
Orey’s process (singular continuous IV process with purely atomic Lévy measure with
Blumenthal–Getoor index β+ ∈ (1, 2) and s1(0) =∞).

Infinite variation (IV)
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Domain of attraction to Cauchy process

It is known that the convex hull of a Cauchy process is SE [3]. Similarly, processes in the
domain of normal attraction are also SE:

Example 7.1

* If Xt/t
d−→ S as t ↓ 0 for some Cauchy random variable S (so-called normal attraction,

e.g. ν([x ,∞))x → c , ν((−∞,−x ])x → c and
∫
(−1,−x]∪[x ,1) yν(dy)→ c ′ as x ↓ 0 for

some c > 0 and c ′ ∈ R), then X is SE.

* If Xt/(tg(t))
d−→ S as t ↓ 0 for a slowly varying g at 0, then C may be either SE or A.

Depends on the size of the fluctuations of g !

Examples



Sums of independent abrupt (A) and strongly eroded (SE) processes

Any of the following are possible for independent summands are realises:

* A + A = A,

* A + A = SE,

* A + SE = A,

* A + SE = SE,

* SE + SE = SE,

* SE + SE = A.

See paper :
D. Bang, J. G. C., A. Mijatović. “When is the convex hull of a Lévy path smooth?” (2022).
To appear in Annales de l’Institute Henri Poincaré. https://arxiv.org/abs/2205.1441

Examples

https://arxiv.org/abs/2205.1441


Growth of the derivative C ′

Regimes: Finite slope (FS)

Infinite slope (IS)

Setting:
s ∈ L+(S) a.s., i.e. C ′ a.s.

non-constant
at vertex time τs

IV X , i.e. limt↓0 C
′
t = −∞ and

non-constant C ′ at time 0

Upper functions: lim supt↓0(C
′
t+τs − s)/f (t)

lim supt↓0 |C ′
t |f (t)

Lower functions: lim inft↓0(C
′
t+τs − s)/f (t)

lim inft↓0 |C ′
t |f (t)
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Figure:

Left:

(FS) regime.

Right: (IS) regime.
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Regime (FS): Behaviour at vertex time τs

Corollary 8.1

Suppose xαν([x ,∞))→ c+ > 0 and xαν((−∞,−x ])→ c− for some α ∈ (0, 1), and denote
ρ := limt↓0P(Xt > γ0t) ∈ (0, 1] where γ0 := limt↓0 Xt/t. Set f (t) := t1/α−1 logq(1/t), then:

(i) lim inft↓0(C
′
t+τγ0

− γ0)/f (t) =∞ for q < −1,
(ii) lim inft↓0(C

′
t+τγ0

− γ0)/f (t) = 0 and lim supt↓0(C
′
t+τγ0

− γ0)/f (t) =∞ for

q ∈ [−1, (1/α− 1)/ρ)

(iii) lim supt↓0(C
′
t+τs − s)/f (t) = 0 for q > (1/α− 1)/ρ.

D. Bang, J. G. González Cázares, A. Mijatović. “ How smooth can the convex hull of a Lévy
path be” (2022). https://arxiv.org/abs/2206.09928

Further results

https://arxiv.org/abs/2206.09928
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path be” (2022). https://arxiv.org/abs/2206.09928

Further results

https://arxiv.org/abs/2206.09928


Is C r -Hölder continuous (sup0≤u<t≤T
|Ct−Cu|
(t−u)r <∞ a.s.)?

Blumenthal–Getoor index of X is critical: β := inf
{
p > 0 :

∫
(−1,1)|x |

pν(dx) <∞
}

Lévy process X r ∈ (0, 1] Is C r -Hölder continuous?

σ2 > 0
0 < r < 1/2 Yes
1/2 ≤ r ≤ 1 No

σ2 = 0

β ∈ [0, 1] and FV 0 < r ≤ 1 Yes

β = 1 and IV
0 < r < 1 Yes
r = 1 No

β ∈ (1, 2]

∫
(−1,1) |x |

βν(dx) =∞ 0 < r < 1/β Yes
1/β ≤ r ≤ 1 No

Iβ <∞
0 < r ≤ 1/β Yes
1/β < r ≤ 1 No

where Iβ :=
∫ 1
0 E

[
min{|Xt |/t1/β, 1}β/(β−1)

]
dt
t for β ∈ (1, 2].

D. Bang, J. G. González Cázares, A. Mijatović. “Hölder continuity of the convex minorant of
a Lévy process” (2022). https://arxiv.org/abs/2207.12433
Further results

https://arxiv.org/abs/2207.12433
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