When is the convex hull of a Lévy path smooth?

University of Warwick & The Alan Turing Institute

Engineering and Physical Sciences Research Council

Journées de Probabilités, Angers, France, 22 juin 2023

Figure: Path of a Brownian motion on [0, 1] and the convex minorant C of its graph.

Let X be independent of the stick-breaking process ℓ on [0, T], i.e. for iid $U_n \sim U(0, 1)$, $L_0 = T$, $L_n = L_{n-1}U_n$, $\ell_n = L_{n-1} - L_n$ for $n \in \mathbb{N}$:

Then the faces of the convex minorant of X, sampled in a length-size-biased way (uniformly at random), have the same law as the sequence (ℓ_n, ξ_n) , $n \in \mathbb{N}$, where, given ℓ , the variables $\xi_n = X_{L_{n-1}} - X_{L_n} \sim F(\ell_n, \cdot)$, $n \in \mathbb{N}$, are independent (here $F(t, dx) = \mathbb{P}(X_t \in dx)$ for $(t, x) \in (0, \infty) \times \mathbb{R}$).

Let X be independent of the stick-breaking process ℓ on [0, T], i.e. for iid $U_n \sim U(0, 1)$, $L_0 = T$, $L_n = L_{n-1}U_n$, $\ell_n = L_{n-1} - L_n$ for $n \in \mathbb{N}$:

Then the faces of the convex minorant of X, sampled in a length-size-biased way (uniformly at random), have the same law as the sequence (ℓ_n, ξ_n) , $n \in \mathbb{N}$, where, given ℓ , the variables $\xi_n = X_{L_{n-1}} - X_{L_n} \sim F(\ell_n, \cdot)$, $n \in \mathbb{N}$, are independent (here $F(t, dx) = \mathbb{P}(X_t \in dx)$ for $(t, x) \in (0, \infty) \times \mathbb{R}$).

Figure: Path of a Brownian motion on [0, 1] and the convex minorant of its graph.

Figure: Path of a Lévy process on [0,1] and the convex hull of its graph. (Cauchy case studied in [3])

Piecewise linear convex function and associated set of slopes

Figure: Piecewise linear convex function C (8 faces)

Piecewise linear convex function and associated set of slopes

and corresponding set of slopes ${\cal S}$

Left, right and two-sided accumulation points of ${\mathcal S}$

Denote by $\mathcal{L}^{-}(\mathcal{S})$ (resp. $\mathcal{L}^{+}(\mathcal{S})$) the set of all left (resp. right) limit points of $\mathcal{S} \subset \mathbb{R}$.

Left, right and two-sided accumulation points of ${\mathcal S}$

Denote by $\mathcal{L}^{-}(\mathcal{S})$ (resp. $\mathcal{L}^{+}(\mathcal{S})$) the set of all left (resp. right) limit points of $\mathcal{S} \subset \mathbb{R}$.

Left, right and two-sided accumulation points of ${\cal S}$

Denote by $\mathcal{L}^{-}(\mathcal{S})$ (resp. $\mathcal{L}^{+}(\mathcal{S})$) the set of all left (resp. right) limit points of $\mathcal{S} \subset \mathbb{R}$.

Let $\mathcal{L}(\mathcal{S}) \coloneqq \mathcal{L}^{-}(\mathcal{S}) \cup \mathcal{L}^{+}(\mathcal{S})$ be the (closed) set of all limit points of \mathcal{S} .

Theorem 1 (B, González Cázares, Mijatović)

For any measurable set $I \subseteq \mathbb{R}$, the set $S \cap I$ is either a.s. finite or a.s. infinite. Moreover, the cardinality $|S \cap I|$ of the intersection $S \cap I$ is infinite a.s. if and only if

$$\int_0^1 \mathbb{P}(\frac{X_t}{t} \in I) \frac{\mathrm{d}t}{t} = \infty.$$

(1)

Theorem 1 (B, González Cázares, Mijatović)

For any measurable set $I \subseteq \mathbb{R}$, the set $S \cap I$ is either a.s. finite or a.s. infinite. Moreover, the cardinality $|S \cap I|$ of the intersection $S \cap I$ is infinite a.s. if and only if

$$\int_0^1 \mathbb{P}(X_t/t \in I) \frac{\mathrm{d}t}{t} = \infty.$$

(1)

Corollary 1

The limit set $\mathcal{L}(\mathcal{S})$ is deterministic a.s.

Theorem 1 (B, González Cázares, Mijatović)

For any measurable set $I \subseteq \mathbb{R}$, the set $S \cap I$ is either a.s. finite or a.s. infinite. Moreover, the cardinality $|S \cap I|$ of the intersection $S \cap I$ is infinite a.s. if and only if

$$\int_0^1 \mathbb{P}(X_t/t \in I) \frac{\mathrm{d}t}{t} = \infty.$$

(1)

Corollary 1

The limit set $\mathcal{L}(\mathcal{S})$ is deterministic a.s.

Theorem 2

The boundary of the convex hull of the graph $t \mapsto (t, X_t)$, $t \in [0, T]$, of a path of any Lévy process X is continuously differentiable (as a closed curve in \mathbb{R}^2) a.s. if and only if (1) holds for all intervals I in \mathbb{R} . Moreover, this is equivalent to the set S being dense in \mathbb{R} a.s.

Finite variation X - results Let $\psi(u) = \log \mathbb{E}e^{iuX_1} = iu\gamma_0 + \int_{\mathbb{R}} (e^{iux} - 1)\nu(dx)$ be the Lévy-Khintchine exponent of X.

Let $\psi(u) = \log \mathbb{E} e^{iuX_1} = iu\gamma_0 + \int_{\mathbb{R}} (e^{iux} - 1)\nu(\mathrm{d}x)$ be the Lévy-Khintchine exponent of X.

Lévy process X	Derivative \mathcal{C}' and the limt set $\mathcal{L}(\mathcal{S})$
Finite variation (FV)	$\begin{array}{l} C' \text{ bounded below and above;} \\ C' \text{ discontinuous on boundary} \\ \partial I_r, \forall r \in \mathcal{S}; \ \mathcal{L}(\mathcal{S}) = \{\gamma_0\}, \\ \text{where } \gamma_0 = \lim_{t \downarrow 0} \frac{X_t/t}{t} \text{ a.s., and} \\ \gamma_0 \notin \mathcal{S} \end{array}$

Let $\psi(u) = \log \mathbb{E} e^{iuX_1} = iu\gamma_0 + \int_{\mathbb{R}} (e^{iux} - 1)\nu(dx)$ be the Lévy-Khintchine exponent of X.

Lévy process X	Derivative C' and the limt set $\mathcal{L}(\mathcal{S})$
Finite variation (FV)	$\begin{array}{l} C' \text{ bounded below } and \text{ above;} \\ C' \text{ discontinuous on boundary} \\ \partial I_r, \forall r \in \mathcal{S}; \ \mathcal{L}(\mathcal{S}) = \{\gamma_0\}, \\ \text{where } \gamma_0 = \lim_{t \downarrow 0} X_t/t \text{ a.s., and} \\ \gamma_0 \notin \mathcal{S} \end{array}$

Behaviour depends on $I_{-} := \int_{0}^{1} \mathbb{P}(X_{t}/t < \gamma_{0}) \frac{\mathrm{d}t}{t}, \quad I_{+} := \int_{0}^{1} \mathbb{P}(X_{t}/t > \gamma_{0}) \frac{\mathrm{d}t}{t}$ via

$$\mathcal{L}^{\pm}(\mathcal{S}) = \{\gamma_0\} \quad \stackrel{\mathsf{Thm}}{\Longleftrightarrow} \quad I_{\pm} = \infty \quad \stackrel{[2]}{\Longleftrightarrow} \quad \int_{(-1,1)} \frac{\max\{\pm x, 0\}}{\int_0^{\max\{\pm x, 0\}} \overline{\nu}_{\mp}(y) \mathrm{d}y} \nu(\mathrm{d}x) = \infty,$$

where $\overline{\nu}_+(x) := \nu((x,\infty))$ & $\overline{\nu}_-(x) := \nu((-\infty,-x))$, x > 0, and $\mp := -(\pm)$.

Finite variation (FV)

Convex minorant C (of an FV Lévy process) and its derivative C'

Finite variation (FV)

Recall $\psi(u) = \log \mathbb{E}e^{iuX_1}$ is the Lévy-Khintchine exponent of X and define

$$\mathfrak{s}_1(r) \coloneqq \int_{\mathbb{R}} \Re rac{1}{1 + iur - \psi(u)} \mathrm{d} u \in (0,\infty], \quad r \in \mathbb{R}.$$
 Then for all $a < b$:

Recall $\psi(u) = \log \mathbb{E} e^{iuX_1}$ is the Lévy-Khintchine exponent of X and define

$$\mathfrak{s}_1(r) := \int_{\mathbb{R}} \Re rac{1}{1 + iur - \psi(u)} \mathrm{d} u \in (0,\infty], \quad r \in \mathbb{R}.$$
 Then for all $a < b$:

$$\int_a^b \mathfrak{s}_1(r) \mathrm{d} r < \infty \qquad \text{if and only if} \qquad \int_0^1 \mathbb{P}(X_t/t \in (a,b)) \frac{\mathrm{d} t}{t} < \infty.$$

Lévy process X	Derivative \mathcal{C}' and the limit set $\mathcal{L}(\mathcal{S})$
$\mathfrak{s}_1 \in L^1_{\mathrm{loc}}(r), \ orall r \in \mathbb{R}$	$\begin{array}{l} C' \text{ discontinuous on boundary} \\ \partial I_r, \ \forall r \in \mathcal{S}; \ -\lim_{t \downarrow 0} C'(t) = \\ \lim_{t \uparrow T} C'(t) = \infty; \ \mathcal{L}(\mathcal{S}) = \emptyset \end{array}$

Recall $\psi(u) = \log \mathbb{E} e^{iuX_1}$ is the Lévy-Khintchine exponent of X and define

$$\mathfrak{s}_1(r) := \int_{\mathbb{R}} \Re rac{1}{1 + iur - \psi(u)} \mathrm{d} u \in (0,\infty], \quad r \in \mathbb{R}.$$
 Then for all $a < b$:

$$\int_a^b \mathfrak{s}_1(r) \mathrm{d} r < \infty \qquad \text{if and only if} \qquad \int_0^1 \mathbb{P}(X_t/t \in (a,b)) \frac{\mathrm{d} t}{t} < \infty.$$

Lévy process X	Derivative C' and the limit set $\mathcal{L}(\mathcal{S})$
$\mathfrak{s}_1 \in L^1_{\mathrm{loc}}(r), \ orall r \in \mathbb{R}$	$\begin{array}{l} C' \text{ discontinuous on boundary} \\ \partial I_r, \forall r \in \mathcal{S}; -\lim_{t \downarrow 0} C'(t) = \\ \lim_{t \uparrow \mathcal{T}} C'(t) = \infty; \mathcal{L}(\mathcal{S}) = \emptyset \end{array}$
$\mathfrak{s}_1(r) = \infty, \ orall r \in \mathbb{R}$	$ \begin{array}{l} \textbf{C}' \text{ is continuous on } (0, T); \\ -\lim_{t\downarrow 0} \textbf{C}'(t) = \lim_{t\uparrow T} \textbf{C}'(t) = \\ \infty; \ \mathcal{L}(\mathcal{S}) = \mathbb{R} \end{array} $

Recall $\psi(u) = \log \mathbb{E}e^{iuX_1}$ is the Lévy-Khintchine exponent of X and define

$$0 < \mathfrak{s}_1(\mathbf{r}) = \frac{1}{2\pi} \int_{\mathbb{R}} \Re \frac{1}{1 + iur - \psi(u)} \mathrm{d} u \leq \infty, \qquad \mathbf{r} \in \mathbb{R}.$$

Recall $\psi(u) = \log \mathbb{E}e^{iuX_1}$ is the Lévy-Khintchine exponent of X and define

$$0 < \mathfrak{s}_1(\mathbf{r}) = rac{1}{2\pi} \int_{\mathbb{R}} \Re rac{1}{1 + iur - \psi(u)} \mathrm{d} u \leq \infty, \qquad \mathbf{r} \in \mathbb{R}.$$

Smoothness of hull of X at $r \leftrightarrow$ hitting of points and \exists local time of $X^{(r)} = (X_t - rt)_{t \geq 0}$

Recall $\psi(u) = \log \mathbb{E}e^{iuX_1}$ is the Lévy-Khintchine exponent of X and define

$$0 < \mathfrak{s}_1(\mathbf{r}) = \frac{1}{2\pi} \int_{\mathbb{R}} \Re \frac{1}{1 + iur - \psi(u)} \mathrm{d} u \leq \infty, \qquad \mathbf{r} \in \mathbb{R}.$$

Smoothness of hull of X at $r \leftrightarrow hitting$ of points and \exists local time of $X^{(r)} = (X_t - rt)_{t \geq 0}$

Proposition 1

 $r \in \mathcal{L}(\mathcal{S}) \iff \mathfrak{s}_1 \notin L^1_{\mathrm{loc}}(r)$ (i.e. \mathfrak{s}_1 not integrable on any neighbourhood of $r \in \mathbb{R}$).

Recall $\psi(u) = \log \mathbb{E}e^{iuX_1}$ is the Lévy-Khintchine exponent of X and define

$$0 < \mathfrak{s}_1(\mathbf{r}) = \frac{1}{2\pi} \int_{\mathbb{R}} \Re \frac{1}{1 + iur - \psi(u)} \mathrm{d} u \leq \infty, \qquad \mathbf{r} \in \mathbb{R}.$$

Smoothness of hull of X at $r \leftrightarrow$ hitting of points and \exists local time of $X^{(r)} = (X_t - rt)_{t \geq 0}$

Proposition 1

 $r \in \mathcal{L}(\mathcal{S}) \iff \mathfrak{s}_1 \notin L^1_{\mathrm{loc}}(r)$ (i.e. \mathfrak{s}_1 not integrable on any neighbourhood of $r \in \mathbb{R}$).

We know that $\mathfrak{s}_1(r) < \infty$ is equivalent to:

- * $(X_t rt)_{t \ge 0}$ hits points
- * 0 is regular and instantaneous for $(X_t rt)_{t \ge 0}$
- * $(X_t rt)_{t \ge 0}$ has local time at 0

Recall $\psi(u) = \log \mathbb{E}e^{iuX_1}$ is the Lévy-Khintchine exponent of X and define

$$0 < \mathfrak{s}_1(\mathbf{r}) = \frac{1}{2\pi} \int_{\mathbb{R}} \Re \frac{1}{1 + iur - \psi(u)} \mathrm{d} u \leq \infty, \qquad \mathbf{r} \in \mathbb{R}.$$

Smoothness of hull of X at $r \leftrightarrow$ hitting of points and \exists local time of $X^{(r)} = (X_t - rt)_{t \geq 0}$

Proposition 1

 $r \in \mathcal{L}(\mathcal{S}) \iff \mathfrak{s}_1 \notin L^1_{\mathrm{loc}}(r)$ (i.e. \mathfrak{s}_1 not integrable on any neighbourhood of $r \in \mathbb{R}$).

We know that $\mathfrak{s}_1(r) < \infty$ is equivalent to:

- * $(X_t rt)_{t \ge 0}$ hits points
- * 0 is regular and instantaneous for $(X_t rt)_{t \ge 0}$
- * $(X_t rt)_{t \ge 0}$ has local time at 0

Can these properties depend on r?

Figure: X of infinite variation (IV). Left: C; right: C'

Figure: X of infinite variation (IV). Left: C; right: C'

How can we tell which case it is in terms of the local behaviour of the paths of X?

Abrupt (A) & Strongly Eroded (SE) Lévy processes Denote $X_{t-} := \lim_{s\uparrow t} X_s$ and define the left and right Dini derivatives: $D_t^{\uparrow} := \limsup_{\varepsilon \uparrow 0} (X_{t+\varepsilon} - X_{t-})/\varepsilon$ and $D_t^{\downarrow} := \liminf_{\varepsilon \downarrow 0} (X_{t+\varepsilon} - X_t)/\varepsilon$.

Abrupt (A) & Strongly Eroded (SE) Lévy processes Denote $X_{t-} := \lim_{s\uparrow t} X_s$ and define the left and right Dini derivatives: $D_t^{\uparrow} := \lim_{\varepsilon \downarrow 0} (X_{t+\varepsilon} - X_{t-})/\varepsilon$ and $D_t^{\downarrow} := \lim_{\varepsilon \downarrow 0} (X_{t+\varepsilon} - X_t)/\varepsilon$. If $D_t^{\uparrow} = -\infty$ and $D_t^{\downarrow} = \infty$ at every local minimum t of an IV process X, then Vigon [6] calls X abrupt.

Proposition 2

A Lévy process X is abrupt if and only if $\mathcal{L}(S) = \emptyset$ a.s.

Abrupt (A) & Strongly Eroded (SE) Lévy processes

Denote $X_{t-} := \lim_{s \uparrow t} X_s$ and define the left and right Dini derivatives: $D_t^{\uparrow} := \lim_{\varepsilon \uparrow 0} (X_{t+\varepsilon} - X_{t-})/\varepsilon$ and $D_t^{\downarrow} := \lim_{\varepsilon \downarrow 0} (X_{t+\varepsilon} - X_t)/\varepsilon$.

If $D_t^{\uparrow} = 0$ and $D_t^{\downarrow} = 0$ at every local minimum t of an IV process X, then Vigon [6] calls X eroded.

Abrupt (A) & Strongly Eroded (SE) Lévy processes

Denote $X_{t-} := \lim_{s\uparrow t} X_s$ and define the left and right Dini derivatives: $D_t^{\uparrow} := \lim_{\varepsilon \uparrow 0} (X_{t+\varepsilon} - X_{t-})/\varepsilon$ and $D_t^{\downarrow} := \lim_{\varepsilon \downarrow 0} (X_{t+\varepsilon} - X_t)/\varepsilon$.

If $D_t^{\uparrow} = 0$ and $D_t^{\downarrow} = 0$ at every local minimum t of an IV process X, then Vigon [6] calls X eroded.

X is said to be strongly eroded if: $X^{(r)=}(X_t - rt)_{t \ge 0}$ is eroded $\forall r \in \mathbb{R}$.

Abrupt (A) & Strongly Eroded (SE) Lévy processes

Denote $X_{t-} := \lim_{s \uparrow t} X_s$ and define the left and right Dini derivatives: $D_t^{\uparrow} := \lim_{\varepsilon \uparrow 0} (X_{t+\varepsilon} - X_{t-})/\varepsilon$ and $D_t^{\downarrow} := \lim_{\varepsilon \downarrow 0} (X_{t+\varepsilon} - X_t)/\varepsilon$.

If $D_t^{\uparrow} = 0$ and $D_t^{\downarrow} = 0$ at every local minimum t of an IV process X, then Vigon [6] calls X eroded.

X is said to be strongly eroded if: $X^{(r)=}(X_t - rt)_{t \ge 0}$ is eroded $\forall r \in \mathbb{R}$.

Proposition 3

A Lévy process X is strongly eroded if and only if $\mathcal{L}(\mathcal{S}) = \mathbb{R}$ a.s.

A conjectural dichotomy for IV Lévy processes

Figure: Convex minorant and its right derivative of an IV Lévy process X

Conjectures

A conjectural dichotomy

Conjecture 1

Any IV Lévy process is either A or SE. Equivalently, either $\mathfrak{s}_1 \in L^1_{loc}(r), \forall r \in \mathbb{R}$, or $\mathfrak{s}_1 = \infty$ a.e.

Geometrically, either the Lévy process shoots away from the convex minorant as soon as it touches it, or it stays close to the convex minorant when it touches it. Conjecture 1 is implied by Vigon's point-hitting conjecture:

A conjectural dichotomy

Conjecture 1

Any IV Lévy process is either A or SE. Equivalently, either $\mathfrak{s}_1 \in L^1_{loc}(r)$, $\forall r \in \mathbb{R}$, or $\mathfrak{s}_1 = \infty$ a.e.

Geometrically, either the Lévy process shoots away from the convex minorant as soon as it touches it, or it stays close to the convex minorant when it touches it. Conjecture 1 is implied by Vigon's point-hitting conjecture:

Conjecture 2 ([7, Conject. 1.6])

Let X be an infinite variation process and for any $r \in \mathbb{R}$ define the Lévy process $X^{(r)} = (X_t - rt)_{t \ge 0}$. Then the following statements are equivalent. (i) There exists some $r \in \mathbb{R}$ such that the process $X^{(r)}$ hits points. (ii) For all $r \in \mathbb{R}$ the process $X^{(r)}$ hits points. (iii) The process X is abrupt.

A conjectural dichotomy

Conjecture 1

Any IV Lévy process is either A or SE. Equivalently, either $\mathfrak{s}_1 \in L^1_{loc}(r)$, $\forall r \in \mathbb{R}$, or $\mathfrak{s}_1 = \infty$ a.e.

Geometrically, either the Lévy process shoots away from the convex minorant as soon as it touches it, or it stays close to the convex minorant when it touches it. Conjecture 1 is implied by Vigon's point-hitting conjecture:

Conjecture 2 ([7, Conject. 1.6])

Let X be an infinite variation process and for any $r \in \mathbb{R}$ define the Lévy process $X^{(r)} = (X_t - rt)_{t \ge 0}$. Then the following statements are equivalent. (i) There exists some $r \in \mathbb{R}$ such that the process $X^{(r)}$ hits points. ($\iff \mathfrak{s}_1(r) < \infty$.) (ii) For all $r \in \mathbb{R}$ the process $X^{(r)}$ hits points. ($\iff \mathfrak{s}_1(r) < \infty, \forall r \in \mathbb{R}$.) (iii) The process X is abrupt. ($\iff \mathfrak{s}_1 \in L^1_{loc}(r), \forall r \in \mathbb{R}$.)

Infinite variation X – results

The set of slopes S is unbounded on both sides for any X of IV, i.e. $\sup S = -\inf S = \infty$, and hence $-\lim_{t\downarrow 0} C'(t) = \lim_{t\uparrow T} C'(t) = \infty$ a.s.

Any SE (resp. A) process, when perturbed by a finite variation process, is still SE (resp. A).

Proposition 4

Suppose X = Y + Z for (possibly dependent) Lévy processes Y and Z. Let S_X and S_Z be the sets of slopes of the faces of the convex minorants of X and Z, respectively. If Y is of FV (possibly finite activity) with natural drift b, then $\mathcal{L}(S_X) = \mathcal{L}(S_Z) + b$.

Recipe to construct many SE and A processes!

Let Z be standard Cauchy process, which is SE since law of Z_t/t does not depend on t (first proved by Bertoin [3])

Too much asymmetry breaks smoothness

Proposition 5

If X is IV with $\nu((-y, -x]) \ge c\nu([x, y))$ for some c > 1 and and all 0 < x < y close to zero, then $\mathcal{L}(\mathcal{S}) = \emptyset$ a.s. making X abrupt.

Example:

Weakly 1-stable process, i.e. $\nu((-\infty, -x)) = c_-x^{-1}$ and $\nu((x, \infty)) = c_+x^{-1}$ for all x > 0 and some $c_+ \neq c_-$.

Sufficient conditions for X to be strongly eroded (or abrupt)

Corollary 2

Let X be a Lévy process of IV with $e^{\psi(u)} = \mathbb{E}e^{iuX_1}$, $u \in \mathbb{R}$. (i) If $\limsup_{u\to\infty} |\psi(u)/u| < \infty$, then X is SE. (ii) If $\lim_{u\to\infty} |\psi(u)/u| = \infty$, then X is either A or SE.

Sufficient conditions for X to be strongly eroded (or abrupt)

Corollary 2

Let X be a Lévy process of IV with $e^{\psi(u)} = \mathbb{E}e^{iuX_1}$, $u \in \mathbb{R}$. (i) If $\limsup_{u\to\infty} |\psi(u)/u| < \infty$, then X is SE. (ii) If $\lim_{u\to\infty} |\psi(u)/u| = \infty$, then X is either A or SE. In fact, if $\liminf_{u\to\infty} |\psi(u)/u^{1+\varepsilon}| > 0$ for some $\varepsilon > 0$, then X is A.

Most Lévy processes are included! Examples:

- (a) Any process attracted to an α -stable process in small-time with $\alpha \in (1, 2]$;
- (b) 1-semi-stable processes is SE if it is strictly 1-semi-stable and otherwise it is A.

Sufficient conditions for X to be strongly eroded (or abrupt)

Corollary 2

Let X be a Lévy process of IV with $e^{\psi(u)} = \mathbb{E}e^{iuX_1}$, $u \in \mathbb{R}$. (i) If $\limsup_{u\to\infty} |\psi(u)/u| < \infty$, then X is SE. (ii) If $\lim_{u\to\infty} |\psi(u)/u| = \infty$, then X is either A or SE. In fact, if $\liminf_{u\to\infty} |\psi(u)/u^{1+\varepsilon}| > 0$ for some $\varepsilon > 0$, then X is A.

Most Lévy processes are included! Examples:

- (a) Any process attracted to an α -stable process in small-time with $\alpha \in (1, 2]$;
- (b) 1-semi-stable processes is SE if it is strictly 1-semi-stable and otherwise it is A.

It excludes Lévy processes with $\liminf_{|u|\to\infty} |\psi(u)/u| < \infty = \limsup_{|u|\to\infty} |\psi(u)/u|$, e.g., Orey's process (singular continuous IV process with purely atomic Lévy measure with Blumenthal–Getoor index $\beta_+ \in (1, 2)$ and $\mathfrak{s}_1(0) = \infty$).

Domain of attraction to Cauchy process

It is known that the convex hull of a Cauchy process is SE [3]. Similarly, processes in the domain of *normal* attraction are also SE:

Example 7.1

- * If $X_t/t \xrightarrow{d} S$ as $t \downarrow 0$ for some Cauchy random variable S (so-called *normal* attraction, e.g. $\nu([x,\infty))x \to c$, $\nu((-\infty, -x])x \to c$ and $\int_{(-1,-x]\cup[x,1)} y\nu(\mathrm{d}y) \to c'$ as $x \downarrow 0$ for some c > 0 and $c' \in \mathbb{R}$), then X is SE.
- * If $X_t/(tg(t)) \xrightarrow{d} S$ as $t \downarrow 0$ for a slowly varying g at 0, then C may be either SE or A. Depends on the size of the fluctuations of g!

Sums of independent abrupt (A) and strongly eroded (SE) processes

Any of the following are possible for independent summands are realises:

* A + A = A, * A + A = SE, * A + SE = SE, * SE + SE = SE, * SE + SE = SE, * SE + SE = A,

See paper :

D. Bang, J. G. C., A. Mijatović. "When is the convex hull of a Lévy path smooth?" (2022). To appear in Annales de l'Institute Henri Poincaré. https://arxiv.org/abs/2205.1441

Growth of the derivative C'

Regimes:	Finite slope (FS)	
	$oldsymbol{s} \in \mathcal{L}^+(\mathcal{S})$ a.s., i.e. $oldsymbol{C}'$ a.s.	
Setting:	non-constant	
	at vertex time $ au_{s}$	
Upper functions:	$\limsup_{t\downarrow 0}(extsf{C}_{t+ au_s}'- extsf{s})/f(t)$	
Lower functions:	$\liminf_{t\downarrow 0} (C'_{t+ au_s} - s)/f(t)$	

Further results

Growth of the derivative C'

Regimes:	Finite slope (FS)	Infinite slope (IS)
Setting:	$m{s} \in \mathcal{L}^+(\mathcal{S})$ a.s., i.e. C' a.s. non-constant at vertex time $ au_{m{s}}$	IV X, i.e. $\lim_{t\downarrow 0} C'_t = -\infty$ and non-constant C' at time 0
Upper functions:	$\limsup_{t\downarrow 0}(extsf{C}_{t+ au_s}'- extsf{s})/f(t)$	$\limsup_{t\downarrow 0} C_t' f(t)$
Lower functions:	$\liminf_{t\downarrow 0} (C'_{t+ au_s} - s)/f(t)$	$\liminf_{t\downarrow 0} C_t' f(t)$

Further results

Corollary 8.1

Suppose $x^{\alpha}\nu([x,\infty)) \rightarrow c_+ > 0$ and $x^{\alpha}\nu((-\infty, -x]) \rightarrow c_-$ for some $\alpha \in (0,1)$, and denote $\rho := \lim_{t\downarrow 0} \mathbb{P}(X_t > \gamma_0 t) \in (0,1]$ where $\gamma_0 := \lim_{t\downarrow 0} X_t/t$. Set $f(t) := t^{1/\alpha - 1} \log^q(1/t)$, then:

Corollary 8.1

Suppose $x^{\alpha}\nu([x,\infty)) \rightarrow c_+ > 0$ and $x^{\alpha}\nu((-\infty, -x]) \rightarrow c_-$ for some $\alpha \in (0,1)$, and denote $\rho := \lim_{t\downarrow 0} \mathbb{P}(X_t > \gamma_0 t) \in (0,1]$ where $\gamma_0 := \lim_{t\downarrow 0} X_t/t$. Set $f(t) := t^{1/\alpha - 1} \log^q(1/t)$, then: (i) $\liminf_{t\downarrow 0} (C'_{t+\tau_{\gamma_0}} - \gamma_0)/f(t) = \infty$ for q < -1,

Corollary 8.1

Suppose
$$x^{\alpha}\nu([x,\infty)) \rightarrow c_{+} > 0$$
 and $x^{\alpha}\nu((-\infty, -x]) \rightarrow c_{-}$ for some $\alpha \in (0,1)$, and denote $\rho := \lim_{t\downarrow 0} \mathbb{P}(X_{t} > \gamma_{0}t) \in (0,1]$ where $\gamma_{0} := \lim_{t\downarrow 0} X_{t}/t$. Set $f(t) := t^{1/\alpha - 1} \log^{q}(1/t)$, then:
(i) $\liminf_{t\downarrow 0} (C'_{t+\tau\gamma_{0}} - \gamma_{0})/f(t) = \infty$ for $q < -1$,
(ii) $\liminf_{t\downarrow 0} (C'_{t+\tau\gamma_{0}} - \gamma_{0})/f(t) = 0$ and $\limsup_{t\downarrow 0} (C'_{t+\tau\gamma_{0}} - \gamma_{0})/f(t) = \infty$ for $q \in [-1, (1/\alpha - 1)/\rho)$

Corollary 8.1

Suppose
$$x^{\alpha}\nu([x,\infty)) \rightarrow c_{+} > 0$$
 and $x^{\alpha}\nu((-\infty, -x]) \rightarrow c_{-}$ for some $\alpha \in (0,1)$, and denote $\rho := \lim_{t\downarrow 0} \mathbb{P}(X_{t} > \gamma_{0}t) \in (0,1]$ where $\gamma_{0} := \lim_{t\downarrow 0} X_{t}/t$. Set $f(t) := t^{1/\alpha-1}\log^{q}(1/t)$, then:
(i) $\liminf_{t\downarrow 0} (C'_{t+\tau_{\gamma_{0}}} - \gamma_{0})/f(t) = \infty$ for $q < -1$,
(ii) $\liminf_{t\downarrow 0} (C'_{t+\tau_{\gamma_{0}}} - \gamma_{0})/f(t) = 0$ and $\limsup_{t\downarrow 0} (C'_{t+\tau_{\gamma_{0}}} - \gamma_{0})/f(t) = \infty$ for $q \in [-1, (1/\alpha - 1)/\rho)$
(iii) $\limsup_{t\downarrow 0} (C'_{t+\tau_{s}} - s)/f(t) = 0$ for $q > (1/\alpha - 1)/\rho$.

D. Bang, J. G. González Cázares, A. Mijatović. "How smooth can the convex hull of a Lévy path be" (2022). https://arxiv.org/abs/2206.09928

Further results

Is C r-Hölder continuous (sup_{0 \le u < t \le T} $\frac{|C_t - C_u|}{(t-u)^r} < \infty$ a.s.)?

 $\mathsf{Blumenthal}{-}\mathsf{Getoor} \text{ index of } X \text{ is critical: } \beta \coloneqq \inf \left\{ p > 0 \, : \, \int_{(-1,1)} \lvert x \rvert^p \nu(\mathrm{d} x) < \infty \right\}$

Lévy process X			$r \in (0,1]$	ls C r-Hölder continuous?
$\sigma^2 > 0$			0 < r < 1/2	Yes
0 > 0		$1/2 \le r \le 1$	No	
$\sigma^2 = 0$	$eta \in [0,1]$ and FV		$0 < r \leq 1$	Yes
	eta=1 and IV		0 < r < 1	Yes
			r = 1	No
	$\beta \in (1,2]$	$\int_{(-1,1)} x ^{\beta} \nu(\mathrm{d} x) = \infty$	0 < r < 1/eta	Yes
			$1/eta \leq r \leq 1$	No
		$I_eta < \infty$	$0 < r \leq 1/eta$	Yes
			$1/eta < r \leq 1$	No

where $I_{\beta} \coloneqq \int_0^1 \mathbb{E} \left[\min\{|X_t|/t^{1/\beta},1\}^{\beta/(\beta-1)} \right] \frac{\mathrm{d}t}{t}$ for $\beta \in (1,2]$.

D. Bang, J. G. González Cázares, A. Mijatović. "Hölder continuity of the convex minorant of a Lévy process" (2022). https://arxiv.org/abs/2207.12433

- David Bang, Jorge González Cázares, and Aleksandar Mijatović. "When is the convex hull of a Lévy path smooth?" (2022). DOI: 10.48550/ARXIV.2205.14416.
- Jean Bertoin. "Regularity of the half-line for Lévy processes". Bull. Sci. Math. 121.5 (1997), pp. 345–354. ISSN: 0007-4497.
- [3] Jean Bertoin. "The convex minorant of the Cauchy process". Electron. Comm. Probab. 5 (2000), pp. 51-55. ISSN: 1083-589X. DOI: 10.1214/ECP.v5-1017. URL: https://doi.org/10.1214/ ECP.v5-1017.
- [4] Jorge Ignacio González Cázares and Aleksandar Mijatović. "Convex minorants and the fluctuation theory of Lévy processes". ALEA, Lat. Am. J. Probab. Math. Stat. 19 (2022), pp. 983–999. DOI: 10.30757/ALEA.v19-39.
- Jim Pitman and Gerónimo Uribe Bravo. "The convex minorant of a Lévy process". Ann. Probab. 40.4 (2012), pp. 1636–1674. ISSN: 0091-1798. URL: https://doi.org/10.1214/11-AOP658.
- [6] Vincent Vigon. "Abrupt Lévy processes". Stochastic Process. Appl. 103.1 (2003), pp. 155–168. ISSN: 0304-4149. DOI: 10.1016/S0304-4149(02)00186-2. URL: https://doi.org/10. 1016/S0304-4149(02)00186-2.
 Further results