When is the convex hull of a Lévy path smooth?

University of Warwick \& The Alan Turing Institute

EPSRC

Eneniearing and physial Sciences
Research council

Figure: Path of a Brownian motion on $[0,1]$ and the convex minorant C of its graph.

Theorem 1.1 (Pitman, Uribe Bravo [5] and G. C., Mijatović [4])
Let X be independent of the stick-breaking process ℓ on $[0, T]$, i.e. for iid $U_{n} \sim U(0,1)$, $L_{0}=T, L_{n}=L_{n-1} U_{n}, \ell_{n}=L_{n-1}-L_{n}$ for $n \in \mathbb{N}$:

$$
L_{0}=T
$$

Theorem 1.1 (Pitman, Uribe Bravo [5] and G. C., Mijatović [4])
Let X be independent of the stick-breaking process ℓ on $[0, T]$, i.e. for iid $U_{n} \sim \mathrm{U}(0,1)$, $L_{0}=T, L_{n}=L_{n-1} U_{n}, \ell_{n}=L_{n-1}-L_{n}$ for $n \in \mathbb{N}$:

Theorem 1.1 (Pitman, Uribe Bravo [5] and G. C., Mijatović [4])
Let X be independent of the stick-breaking process ℓ on $[0, T]$, i.e. for iid $U_{n} \sim \mathrm{U}(0,1)$, $L_{0}=T, L_{n}=L_{n-1} U_{n}, \ell_{n}=L_{n-1}-L_{n}$ for $n \in \mathbb{N}$:

Theorem 1.1 (Pitman, Uribe Bravo [5] and G. C., Mijatović [4])
Let X be independent of the stick-breaking process ℓ on $[0, T]$, i.e. for iid $U_{n} \sim \mathrm{U}(0,1)$, $L_{0}=T, L_{n}=L_{n-1} U_{n}, \ell_{n}=L_{n-1}-L_{n}$ for $n \in \mathbb{N}$:

Theorem 1.1 (Pitman, Uribe Bravo [5] and G. C., Mijatović [4])
Let X be independent of the stick-breaking process ℓ on $[0, T]$, i.e. for iid $U_{n} \sim \mathrm{U}(0,1)$, $L_{0}=T, L_{n}=L_{n-1} U_{n}, \ell_{n}=L_{n-1}-L_{n}$ for $n \in \mathbb{N}$:

Theorem 1.1 (Pitman, Uribe Bravo [5] and G. C., Mijatović [4])
Let X be independent of the stick-breaking process ℓ on $[0, T]$, i.e. for iid $U_{n} \sim U(0,1)$, $L_{0}=T, L_{n}=L_{n-1} U_{n}, \ell_{n}=L_{n-1}-L_{n}$ for $n \in \mathbb{N}$:

Then the faces of the convex minorant of X, sampled in a length-size-biased way (uniformly at random), have the same law as the sequence $\left(\ell_{n}, \xi_{n}\right), n \in \mathbb{N}$, where, given ℓ, the variables $\xi_{n}=X_{L_{n-1}}-X_{L_{n}} \sim F\left(\ell_{n}, \cdot\right), n \in \mathbb{N}$, are independent (here $F(t, \mathrm{~d} x)=\mathbb{P}\left(X_{t} \in \mathrm{~d} x\right)$ for $(t, x) \in(0, \infty) \times \mathbb{R})$.

Theorem 1.1 (Pitman, Uribe Bravo [5] and G. C., Mijatović [4])
Let X be independent of the stick-breaking process ℓ on $[0, T]$, i.e. for iid $U_{n} \sim U(0,1)$, $L_{0}=T, L_{n}=L_{n-1} U_{n}, \ell_{n}=L_{n-1}-L_{n}$ for $n \in \mathbb{N}$:

Then the faces of the convex minorant of X, sampled in a length-size-biased way (uniformly at random), have the same law as the sequence $\left(\ell_{n}, \xi_{n}\right), n \in \mathbb{N}$, where, given ℓ, the variables $\xi_{n}=X_{L_{n-1}}-X_{L_{n}} \sim F\left(\ell_{n}, \cdot\right), n \in \mathbb{N}$, are independent (here $F(t, \mathrm{~d} x)=\mathbb{P}\left(X_{t} \in \mathrm{~d} x\right)$ for $(t, x) \in(0, \infty) \times \mathbb{R})$.

Figure: Path of a Brownian motion on $[0,1]$ and the convex minorant of its graph.

Figure: Path of a Lévy process on $[0,1]$ and the convex hull of its graph. (Cauchy case studied in [3])

Piecewise linear convex function and associated set of slopes

Figure: Piecewise linear convex function C (8 faces)

Piecewise linear convex function and associated set of slopes

Figure: Piecewise linear convex function C (8 faces) and corresponding set of slopes \mathcal{S}

Left, right and two-sided accumulation points of \mathcal{S}

Denote by $\mathcal{L}^{-}(\mathcal{S})\left(\right.$ resp. $\left.\mathcal{L}^{+}(\mathcal{S})\right)$ the set of all left (resp. right) limit points of $\mathcal{S} \subset \mathbb{R}$.

Left, right and two-sided accumulation points of \mathcal{S}

Denote by $\mathcal{L}^{-}(\mathcal{S})$ (resp. $\left.\mathcal{L}^{+}(\mathcal{S})\right)$ the set of all left (resp. right) limit points of $\mathcal{S} \subset \mathbb{R}$.

Left, right and two-sided accumulation points of \mathcal{S}

Denote by $\mathcal{L}^{-}(\mathcal{S})$ (resp. $\left.\mathcal{L}^{+}(\mathcal{S})\right)$ the set of all left (resp. right) limit points of $\mathcal{S} \subset \mathbb{R}$.

Let $\mathcal{L}(\mathcal{S}):=\mathcal{L}^{-}(\mathcal{S}) \cup \mathcal{L}^{+}(\mathcal{S})$ be the (closed) set of all limit points of \mathcal{S}.

Theorem 1 (B, González Cázares, Mijatović)

For any measurable set $I \subseteq \mathbb{R}$, the set $\mathcal{S} \cap I$ is either a.s. finite or a.s. infinite. Moreover, the cardinality $\mid \mathcal{S} \cap \mathrm{I}$ of the intersection $\mathcal{S} \cap \mathrm{I}$ is infinite a.s. if and only if

$$
\begin{equation*}
\int_{0}^{1} \mathbb{P}\left(X_{t} / t \in I\right) \frac{\mathrm{d} t}{t}=\infty \tag{1}
\end{equation*}
$$

Theorem 1 (B, González Cázares, Mijatović)

For any measurable set $I \subseteq \mathbb{R}$, the set $\mathcal{S} \cap \mathrm{I}$ is either a.s. finite or a.s. infinite. Moreover, the cardinality $\mid \mathcal{S} \cap \mathrm{I}$ of the intersection $\mathcal{S} \cap \mathrm{I}$ is infinite a.s. if and only if

$$
\begin{equation*}
\int_{0}^{1} \mathbb{P}\left(X_{t} / t \in I\right) \frac{\mathrm{d} t}{t}=\infty \tag{1}
\end{equation*}
$$

Corollary 1

The limit set $\mathcal{L}(\mathcal{S})$ is deterministic a.s.

Theorem 1 (B, González Cázares, Mijatović)

For any measurable set $I \subseteq \mathbb{R}$, the set $\mathcal{S} \cap \mathrm{I}$ is either a.s. finite or a.s. infinite. Moreover, the cardinality $\mid \mathcal{S} \cap \mathrm{I}$ of the intersection $\mathcal{S} \cap \mathrm{I}$ is infinite a.s. if and only if

$$
\begin{equation*}
\int_{0}^{1} \mathbb{P}\left(X_{t} / t \in I\right) \frac{\mathrm{d} t}{t}=\infty \tag{1}
\end{equation*}
$$

Corollary 1

The limit set $\mathcal{L}(\mathcal{S})$ is deterministic a.s.

Theorem 2

The boundary of the convex hull of the graph $t \mapsto\left(t, X_{t}\right), t \in[0, T]$, of a path of any Lévy process X is continuously differentiable (as a closed curve in \mathbb{R}^{2}) a.s. if and only if (1) holds for all intervals I in \mathbb{R}. Moreover, this is equivalent to the set \mathcal{S} being dense in \mathbb{R} a.s.

Finite variation X - results
Let $\psi(u)=\log \mathbb{E} e^{i u X_{1}}=i u \gamma_{0}+\int_{\mathbb{R}}\left(e^{i u x}-1\right) \nu(\mathrm{d} x)$ be the Lévy-Khintchine exponent of X.

Finite variation X - results

Let $\psi(u)=\log \mathbb{E} e^{i u X_{1}}=i u \gamma_{0}+\int_{\mathbb{R}}\left(e^{i u x}-1\right) \nu(\mathrm{d} x)$ be the Lévy-Khintchine exponent of X.

Lévy process X	Derivative C^{\prime} and the limt set
	$\mathcal{L}(\mathcal{S})$
	C^{\prime} bounded below and above;
Finite variation	C^{\prime} discontinuous on boundary
(FV)	$\partial I_{r}, \forall r \in \mathcal{S} ; \mathcal{L}(\mathcal{S})=\left\{\gamma_{0}\right\}$,
	where $\gamma_{0}=\lim _{t \downarrow 0} X_{t} / t$ a.s., and
	$\gamma_{0} \notin \mathcal{S}$

Finite variation X - results

Let $\psi(u)=\log \mathbb{E} e^{i u X_{1}}=i u \gamma_{0}+\int_{\mathbb{R}}\left(e^{i u x}-1\right) \nu(\mathrm{d} x)$ be the Lévy-Khintchine exponent of X.

Lévy process X	Derivative C^{\prime} and the limt set
	$\mathcal{L}(\mathcal{S})$
	C^{\prime} bounded below and above;
Finite variation	C^{\prime} discontinuous on boundary
(FV)	$\partial I_{r}, \forall r \in \mathcal{S} ; \mathcal{L}(\mathcal{S})=\left\{\gamma_{0}\right\}$,
	where $\gamma_{0}=\lim _{t \downarrow 0} X_{t} / t$ a.s., and
	$\gamma_{0} \notin \mathcal{S}$

Behaviour depends on $I_{-}:=\int_{0}^{1} \mathbb{P}\left(X_{t} / t<\gamma_{0}\right) \frac{\mathrm{d} t}{t}, \quad I_{+}:=\int_{0}^{1} \mathbb{P}\left(X_{t} / t>\gamma_{0}\right) \frac{\mathrm{d} t}{t}$ via

$$
\mathcal{L}^{ \pm}(\mathcal{S})=\left\{\gamma_{0}\right\} \quad \stackrel{\text { Thm }}{ } 1 \quad I_{ \pm}=\infty \quad \stackrel{[2]}{\Longleftrightarrow} \int_{(-1,1)} \frac{\max \{ \pm x, 0\}}{\int_{0}^{\max \{ \pm x, 0\}} \bar{\nu}_{\mp}(y) \mathrm{d} y} \nu(\mathrm{~d} x)=\infty,
$$

where $\bar{\nu}_{+}(x):=\nu((x, \infty)) \& \bar{\nu}_{-}(x):=\nu((-\infty,-x)), x>0$, and $\mp:=-(\pm)$.

Convex minorant C (of an FV Lévy process) and its derivative C^{\prime}

$$
I_{-}<\infty, I_{+}=\infty
$$

$$
I_{+}<\infty, I_{-}=\infty
$$

$$
I_{+}=I_{-}=\infty
$$

Infinite variation X - results

Recall $\psi(u)=\log \mathbb{E} e^{i u X_{1}}$ is the Lévy-Khintchine exponent of X and define

$$
\mathfrak{s}_{1}(r):=\int_{\mathbb{R}} \Re \frac{1}{1+i u r-\psi(u)} \mathrm{d} u \in(0, \infty], \quad r \in \mathbb{R} . \text { Then for all } a<b:
$$

Infinite variation X - results

Recall $\psi(u)=\log \mathbb{E} e^{i u X_{1}}$ is the Lévy-Khintchine exponent of X and define

$$
\begin{gathered}
\mathfrak{s}_{1}(r):=\int_{\mathbb{R}} \Re \frac{1}{1+i u r-\psi(u)} \mathrm{d} u \in(0, \infty], \quad r \in \mathbb{R} . \text { Then for all } a<b: \\
\int_{a}^{b} \mathfrak{s}_{1}(r) \mathrm{d} r<\infty \quad \text { if and only if } \quad \int_{0}^{1} \mathbb{P}\left(X_{t} / t \in(a, b)\right) \frac{\mathrm{d} t}{t}<\infty .
\end{gathered}
$$

Lévy process X	Derivative C^{\prime} and the limit set $\mathcal{L}(\mathcal{S})$
$\mathfrak{s}_{1} \in L_{\text {loc }}^{1}(r)$,	$C^{\prime} \operatorname{discontinuous~on~boundary~}$$\partial I_{r}, \forall r \in \mathcal{S} ;-\lim _{t \downarrow 0} C^{\prime}(t)=$ $\lim _{t \uparrow T} C^{\prime}(t)=\infty ; \mathbb{R}$

Infinite variation X - results

Recall $\psi(u)=\log \mathbb{E} e^{i u X_{1}}$ is the Lévy-Khintchine exponent of X and define

$$
\begin{gathered}
\mathfrak{s}_{1}(r):=\int_{\mathbb{R}} \Re \frac{1}{1+i u r-\psi(u)} \mathrm{d} u \in(0, \infty], \quad r \in \mathbb{R} . \text { Then for all } a<b: \\
\int_{a}^{b} \mathfrak{s}_{1}(r) \mathrm{d} r<\infty \quad \text { if and only if } \quad \int_{0}^{1} \mathbb{P}\left(X_{t} / t \in(a, b)\right) \frac{\mathrm{d} t}{t}<\infty .
\end{gathered}
$$

Lévy process X	Derivative C^{\prime} and the limit set
$\mathcal{L}(\mathcal{S})$	

Infinite variation X - results
Recall $\psi(u)=\log \mathbb{E} e^{i u X_{1}}$ is the Lévy-Khintchine exponent of X and define

$$
0<\mathfrak{s}_{1}(r)=\frac{1}{2 \pi} \int_{\mathbb{R}} \Re \frac{1}{1+i u r-\psi(u)} \mathrm{d} u \leq \infty, \quad r \in \mathbb{R}
$$

Infinite variation X - results
Recall $\psi(u)=\log \mathbb{E} e^{i u X_{1}}$ is the Lévy-Khintchine exponent of X and define

$$
0<\mathfrak{s}_{1}(r)=\frac{1}{2 \pi} \int_{\mathbb{R}} \Re \frac{1}{1+i u r-\psi(u)} \mathrm{d} u \leq \infty, \quad r \in \mathbb{R}
$$

Smoothness of hull of X at $r \longleftrightarrow$ hitting of points and \exists local time of $X^{(r)}=\left(X_{t}-r t\right)_{t \geq 0}$

Infinite variation X - results
Recall $\psi(u)=\log \mathbb{E} e^{i u X_{1}}$ is the Lévy-Khintchine exponent of X and define

$$
0<\mathfrak{s}_{1}(r)=\frac{1}{2 \pi} \int_{\mathbb{R}} \Re \frac{1}{1+i u r-\psi(u)} \mathrm{d} u \leq \infty, \quad r \in \mathbb{R}
$$

Smoothness of hull of X at $r \longleftrightarrow$ hitting of points and \exists local time of $X^{(r)}=\left(X_{t}-r t\right)_{t \geq 0}$

Proposition 1

$r \in \mathcal{L}(\mathcal{S}) \Longleftrightarrow \mathfrak{s}_{1} \notin L_{\mathrm{loc}}^{1}(r)$ (i.e. \mathfrak{s}_{1} not integrable on any neighbourhood of $r \in \mathbb{R}$).

Infinite variation X - results

Recall $\psi(u)=\log \mathbb{E} e^{i u X_{1}}$ is the Lévy-Khintchine exponent of X and define

$$
0<\mathfrak{s}_{1}(r)=\frac{1}{2 \pi} \int_{\mathbb{R}} \Re \frac{1}{1+i u r-\psi(u)} \mathrm{d} u \leq \infty, \quad r \in \mathbb{R} .
$$

Smoothness of hull of X at $r \longleftrightarrow$ hitting of points and \exists local time of $X^{(r)}=\left(X_{t}-r t\right)_{t \geq 0}$

Proposition 1

$r \in \mathcal{L}(\mathcal{S}) \Longleftrightarrow \mathfrak{s}_{1} \notin L_{\mathrm{loc}}^{1}(r)$ (i.e. \mathfrak{s}_{1} not integrable on any neighbourhood of $r \in \mathbb{R}$).
We know that $\mathfrak{s}_{1}(r)<\infty$ is equivalent to:

* $\left(X_{t}-r t\right)_{t \geq 0}$ hits points
* 0 is regular and instantaneous for $\left(X_{t}-r t\right)_{t \geq 0}$
* $\left(X_{t}-r t\right)_{t \geq 0}$ has local time at 0

Infinite variation X - results

Recall $\psi(u)=\log \mathbb{E} e^{i u X_{1}}$ is the Lévy-Khintchine exponent of X and define

$$
0<\mathfrak{s}_{1}(r)=\frac{1}{2 \pi} \int_{\mathbb{R}} \Re \frac{1}{1+i u r-\psi(u)} \mathrm{d} u \leq \infty, \quad r \in \mathbb{R}
$$

Smoothness of hull of X at $r \longleftrightarrow$ hitting of points and \exists local time of $X^{(r)}=\left(X_{t}-r t\right)_{t \geq 0}$

Proposition 1

$r \in \mathcal{L}(\mathcal{S}) \Longleftrightarrow \mathfrak{s}_{1} \notin L_{\mathrm{loc}}^{1}(r)$ (i.e. \mathfrak{s}_{1} not integrable on any neighbourhood of $r \in \mathbb{R}$).
We know that $\mathfrak{s}_{1}(r)<\infty$ is equivalent to:

* $\left(X_{t}-r t\right)_{t \geq 0}$ hits points
* 0 is regular and instantaneous for $\left(X_{t}-r t\right)_{t \geq 0}$
* $\left(X_{t}-r t\right)_{t \geq 0}$ has local time at 0

Can these properties depend on r ?

Figure: X of infinite variation (IV). Left: C; right: C^{\prime}

Figure: X of infinite variation (IV). Left: C; right: C^{\prime}
How can we tell which case it is in terms of the local behaviour of the paths of X ?

Abrupt (A) \& Strongly Eroded (SE) Lévy processes

Denote $X_{t-}:=\lim _{s \uparrow t} X_{s}$ and define the left and right Dini derivatives:
$D_{t}^{\uparrow}:=\lim \sup _{\varepsilon \uparrow 0}\left(X_{t+\varepsilon}-X_{t-}\right) / \varepsilon$ and $D_{t}^{\downarrow}:=\lim \inf _{\varepsilon \downarrow 0}\left(X_{t+\varepsilon}-X_{t}\right) / \varepsilon$.

Abrupt (A) \& Strongly Eroded (SE) Lévy processes

Denote $X_{t-}:=\lim _{s \uparrow t} X_{s}$ and define the left and right Dini derivatives:
$D_{t}^{\uparrow}:=\lim \sup _{\varepsilon \uparrow 0}\left(X_{t+\varepsilon}-X_{t-}\right) / \varepsilon$ and $D_{t}^{\downarrow}:=\liminf _{\varepsilon \downarrow 0}\left(X_{t+\varepsilon}-X_{t}\right) / \varepsilon$.
If $D_{t}^{\uparrow}=-\infty$ and $D_{t}^{\downarrow}=\infty$ at every local minimum t of an IV process X, then Vigon [6] calls X abrupt.

Proposition 2

A Lévy process X is abrupt if and only if $\mathcal{L}(\mathcal{S})=\emptyset$ a.s.

Abrupt (A) \& Strongly Eroded (SE) Lévy processes

Denote $X_{t-}:=\lim _{s \uparrow t} X_{s}$ and define the left and right Dini derivatives:
$D_{t}^{\uparrow}:=\lim \sup _{\varepsilon \uparrow 0}\left(X_{t+\varepsilon}-X_{t-}\right) / \varepsilon$ and $D_{t}^{\downarrow}:=\liminf _{\varepsilon \downarrow 0}\left(X_{t+\varepsilon}-X_{t}\right) / \varepsilon$.
If $D_{t}^{\uparrow}=0$ and $D_{t}^{\downarrow}=0$ at every local minimum t of an IV process X, then Vigon [6] calls X eroded.

Abrupt (A) \& Strongly Eroded (SE) Lévy processes

Denote $X_{t-}:=\lim _{s \uparrow t} X_{s}$ and define the left and right Dini derivatives:
$D_{t}^{\uparrow}:=\lim \sup _{\varepsilon \uparrow 0}\left(X_{t+\varepsilon}-X_{t-}\right) / \varepsilon$ and $D_{t}^{\downarrow}:=\liminf _{\varepsilon \downarrow 0}\left(X_{t+\varepsilon}-X_{t}\right) / \varepsilon$.
If $D_{t}^{\uparrow}=0$ and $D_{t}^{\downarrow}=0$ at every local minimum t of an IV process X, then Vigon [6] calls X eroded.

X is said to be strongly eroded if: $X^{(r)=}\left(X_{t}-r t\right)_{t \geq 0}$ is eroded $\forall r \in \mathbb{R}$.

Abrupt (A) \& Strongly Eroded (SE) Lévy processes

Denote $X_{t-}:=\lim _{s \uparrow t} X_{s}$ and define the left and right Dini derivatives:
$D_{t}^{\uparrow}:=\lim \sup _{\varepsilon \uparrow 0}\left(X_{t+\varepsilon}-X_{t-}\right) / \varepsilon$ and $D_{t}^{\downarrow}:=\liminf _{\varepsilon \downarrow 0}\left(X_{t+\varepsilon}-X_{t}\right) / \varepsilon$.
If $D_{t}^{\uparrow}=0$ and $D_{t}^{\downarrow}=0$ at every local minimum t of an IV process X, then Vigon [6] calls X eroded.

X is said to be strongly eroded if: $X^{(r)=}\left(X_{t}-r t\right)_{t \geq 0}$ is eroded $\forall r \in \mathbb{R}$.

Proposition 3

A Lévy process X is strongly eroded if and only if $\mathcal{L}(\mathcal{S})=\mathbb{R}$ a.s.

A conjectural dichotomy for IV Lévy processes

Figure: Convex minorant and its right derivative of an IV Lévy process X

A conjectural dichotomy

Conjecture 1

Any IV Lévy process is either A or SE. Equivalently, either $\mathfrak{s}_{1} \in L_{\text {loc }}^{1}(r), \forall r \in \mathbb{R}$, or $\mathfrak{s}_{1}=\infty$ a.e.
Geometrically, either the Lévy process shoots away from the convex minorant as soon as it touches it, or it stays close to the convex minorant when it touches it. Conjecture 1 is implied by Vigon's point-hitting conjecture:

A conjectural dichotomy

Conjecture 1

Any IV Lévy process is either A or SE. Equivalently, either $\mathfrak{s}_{1} \in L_{\mathrm{loc}}^{1}(r), \forall r \in \mathbb{R}$, or $\mathfrak{s}_{1}=\infty$ a.e.
Geometrically, either the Lévy process shoots away from the convex minorant as soon as it touches it, or it stays close to the convex minorant when it touches it. Conjecture 1 is implied by Vigon's point-hitting conjecture:

Conjecture 2 ([7, Conject. 1.6])

Let X be an infinite variation process and for any $r \in \mathbb{R}$ define the Lévy process $X^{(r)}=\left(X_{t}-r t\right)_{t \geq 0}$. Then the following statements are equivalent.
(i) There exists some $r \in \mathbb{R}$ such that the process $X^{(r)}$ hits points.
(ii) For all $r \in \mathbb{R}$ the process $X^{(r)}$ hits points.
(iii) The process X is abrupt.

A conjectural dichotomy

Conjecture 1

Any IV Lévy process is either A or SE. Equivalently, either $\mathfrak{s}_{1} \in L_{\mathrm{loc}}^{1}(r), \forall r \in \mathbb{R}$, or $\mathfrak{s}_{1}=\infty$ a.e.
Geometrically, either the Lévy process shoots away from the convex minorant as soon as it touches it, or it stays close to the convex minorant when it touches it. Conjecture 1 is implied by Vigon's point-hitting conjecture:

Conjecture 2 ([7, Conject. 1.6])

Let X be an infinite variation process and for any $r \in \mathbb{R}$ define the Lévy process $X^{(r)}=\left(X_{t}-r t\right)_{t \geq 0}$. Then the following statements are equivalent.
(i) There exists some $r \in \mathbb{R}$ such that the process $X^{(r)}$ hits points. $\left(\Longleftrightarrow \mathfrak{s}_{1}(r)<\infty\right.$.)
(ii) For all $r \in \mathbb{R}$ the process $X^{(r)}$ hits points. $\left(\Longleftrightarrow \mathfrak{s}_{1}(r)<\infty, \forall r \in \mathbb{R}\right.$.)
(iii) The process X is abrupt. $\left(\Longleftrightarrow \mathfrak{s}_{1} \in L_{\text {loc }}^{1}(r), \forall r \in \mathbb{R}\right.$.)

Infinite variation X - results

The set of slopes \mathcal{S} is unbounded on both sides for any X of IV, i.e. $\sup \mathcal{S}=-\inf \mathcal{S}=\infty$, and hence $-\lim _{t \downarrow 0} C^{\prime}(t)=\lim _{t \uparrow T} C^{\prime}(t)=\infty$ a.s.

Any SE (resp. A) process, when perturbed by a finite variation process, is still SE (resp. A).

Proposition 4

Suppose $X=Y+Z$ for (possibly dependent) Lévy processes Y and Z. Let \mathcal{S}_{X} and \mathcal{S}_{Z} be the sets of slopes of the faces of the convex minorants of X and Z, respectively. If Y is of $F V$ (possibly finite activity) with natural drift b, then $\mathcal{L}\left(\mathcal{S}_{X}\right)=\mathcal{L}\left(\mathcal{S}_{Z}\right)+b$.

Recipe to construct many SE and A processes!
Let Z be standard Cauchy process, which is SE since law of Z_{t} / t does not depend on t (first proved by Bertoin [3])

Too much asymmetry breaks smoothness

Proposition 5

If X is $I V$ with $\nu((-y,-x]) \geq c \nu([x, y))$ for some $c>1$ and and all $0<x<y$ close to zero, then $\mathcal{L}(\mathcal{S})=\emptyset$ a.s. making X abrupt.

Example:
Weakly 1 -stable process, i.e. $\nu((-\infty,-x))=c_{-} x^{-1}$ and $\nu((x, \infty))=c_{+} x^{-1}$ for all $x>0$ and some $c_{+} \neq c_{-}$.

Sufficient conditions for X to be strongly eroded (or abrupt)

Corollary 2

Let X be a Lévy process of $I V$ with $e^{\psi(u)}=\mathbb{E} e^{i u X_{1}}, u \in \mathbb{R}$.
(i) If $\lim \sup _{u \rightarrow \infty}|\psi(u) / u|<\infty$, then X is $S E$.
(ii) If $\lim _{u \rightarrow \infty}|\psi(u) / u|=\infty$, then X is either A or $S E$.

Sufficient conditions for X to be strongly eroded (or abrupt)

Corollary 2

Let X be a Lévy process of $I V$ with $e^{\psi(u)}=\mathbb{E} e^{i u X_{1}}, u \in \mathbb{R}$.
(i) If $\lim \sup _{u \rightarrow \infty}|\psi(u) / u|<\infty$, then X is $S E$.
(ii) If $\lim _{u \rightarrow \infty}|\psi(u) / u|=\infty$, then X is either A or $S E$. In fact, if $\lim \inf _{u \rightarrow \infty}\left|\psi(u) / u^{1+\varepsilon}\right|>0$ for some $\varepsilon>0$, then X is A.

Most Lévy processes are included! Examples:
(a) Any process attracted to an α-stable process in small-time with $\alpha \in(1,2]$;
(b) 1-semi-stable processes is SE if it is strictly 1 -semi-stable and otherwise it is A .

Sufficient conditions for X to be strongly eroded (or abrupt)

Corollary 2

Let X be a Lévy process of $I V$ with $e^{\psi(u)}=\mathbb{E} e^{i u X_{1}}, u \in \mathbb{R}$.
(i) If $\lim \sup _{u \rightarrow \infty}|\psi(u) / u|<\infty$, then X is $S E$.
(ii) If $\lim _{u \rightarrow \infty}|\psi(u) / u|=\infty$, then X is either A or $S E$. In fact, if $\lim \inf _{u \rightarrow \infty}\left|\psi(u) / u^{1+\varepsilon}\right|>0$ for some $\varepsilon>0$, then X is A.

Most Lévy processes are included! Examples:
(a) Any process attracted to an α-stable process in small-time with $\alpha \in(1,2]$;
(b) 1-semi-stable processes is SE if it is strictly 1 -semi-stable and otherwise it is A .

It excludes Lévy processes with $\liminf _{|u| \rightarrow \infty}|\psi(u) / u|<\infty=\lim \sup _{|u| \rightarrow \infty}|\psi(u) / u|$, e.g., Orey's process (singular continuous IV process with purely atomic Lévy measure with Blumenthal-Getoor index $\beta_{+} \in(1,2)$ and $\left.\mathfrak{s}_{1}(0)=\infty\right)$.

Domain of attraction to Cauchy process

It is known that the convex hull of a Cauchy process is SE [3]. Similarly, processes in the domain of normal attraction are also SE:

Example 7.1

* If $X_{t} / t \xrightarrow{d} S$ as $t \downarrow 0$ for some Cauchy random variable S (so-called normal attraction, e.g. $\nu([x, \infty)) x \rightarrow c, \nu((-\infty,-x]) x \rightarrow c$ and $\int_{(-1,-x] \cup[x, 1)} y \nu(\mathrm{~d} y) \rightarrow c^{\prime}$ as $x \downarrow 0$ for some $c>0$ and $\left.c^{\prime} \in \mathbb{R}\right)$, then X is SE .
* If $X_{t} /(\operatorname{tg}(t)) \xrightarrow{d} S$ as $t \downarrow 0$ for a slowly varying g at 0 , then C may be either SE or A. Depends on the size of the fluctuations of g !

Sums of independent abrupt (A) and strongly eroded (SE) processes

Any of the following are possible for independent summands are realises:

* $A+A=A$,
$* A+S E=A$,
$* A+S E=S E$,
* $\mathrm{SE}+\mathrm{SE}=\mathrm{SE}$,
* $\mathrm{SE}+\mathrm{SE}=\mathrm{A}$.

See paper :
D. Bang, J. G. C., A. Mijatović. "When is the convex hull of a Lévy path smooth?" (2022).

To appear in Annales de l'Institute Henri Poincaré. https://arxiv.org/abs/2205.1441

Growth of the derivative C^{\prime}

Regimes:	Finite slope (FS)	
Setting:	$s \in \mathcal{L}^{+}(\mathcal{S})$ a.s., i.e. C^{\prime} a.s. non-constant at vertex time τ_{s}	
Upper functions:	$\lim \sup _{t \downarrow 0}\left(C_{t+\tau_{s}}^{\prime}-s\right) / f(t)$	
Lower functions:	$\lim \inf _{t \downarrow 0}\left(C_{t+\tau_{s}}^{\prime}-s\right) / f(t)$	

Figure: (FS) regime.

Growth of the derivative C^{\prime}

Regimes:	Finite slope (FS)	Infinite slope (IS)
Setting:	$s \in \mathcal{L}^{+}(\mathcal{S})$ a.s., i.e. C^{\prime} a.s. non-constant at vertex time τ_{s}	IV X, i.e. $\lim _{t \downarrow 0} C_{t}^{\prime}=-\infty$ and non-constant C^{\prime} at time 0
Upper functions:	\limsup	
Lower functions:	$\lim \inf _{t \downarrow 0}\left(C_{t+\tau_{s}}^{\prime}-s\right) / f(t)$	$\limsup _{t \downarrow 0}\left\|C_{t}^{\prime}\right\| f(t)$

Figure: Left: (FS) regime. Right: (IS) regime.

Regime (FS): Behaviour at vertex time τ_{s}

Corollary 8.1

Suppose $x^{\alpha} \nu([x, \infty)) \rightarrow c_{+}>0$ and $x^{\alpha} \nu((-\infty,-x]) \rightarrow c_{-}$for some $\alpha \in(0,1)$, and denote $\rho:=\lim _{t \downarrow 0} \mathbb{P}\left(X_{t}>\gamma_{0} t\right) \in(0,1]$ where $\gamma_{0}:=\lim _{t \downarrow 0} X_{t} / t$. Set $f(t):=t^{1 / \alpha-1} \log ^{q}(1 / t)$, then:

Regime (FS): Behaviour at vertex time τ_{s}

Corollary 8.1

Suppose $x^{\alpha} \nu([x, \infty)) \rightarrow c_{+}>0$ and $x^{\alpha} \nu((-\infty,-x]) \rightarrow c_{-}$for some $\alpha \in(0,1)$, and denote $\rho:=\lim _{t \downarrow 0} \mathbb{P}\left(X_{t}>\gamma_{0} t\right) \in(0,1]$ where $\gamma_{0}:=\lim _{t \downarrow 0} X_{t} / t$. Set $f(t):=t^{1 / \alpha-1} \log ^{q}(1 / t)$, then:
(i) $\liminf _{t \downarrow 0}\left(C_{t+\tau_{\gamma_{0}}}^{\prime}-\gamma_{0}\right) / f(t)=\infty$ for $q<-1$,

Regime (FS): Behaviour at vertex time τ_{s}

Corollary 8.1

Suppose $x^{\alpha} \nu([x, \infty)) \rightarrow c_{+}>0$ and $x^{\alpha} \nu((-\infty,-x]) \rightarrow c_{-}$for some $\alpha \in(0,1)$, and denote $\rho:=\lim _{t \downarrow 0} \mathbb{P}\left(X_{t}>\gamma_{0} t\right) \in(0,1]$ where $\gamma_{0}:=\lim _{t \downarrow 0} X_{t} / t$. Set $f(t):=t^{1 / \alpha-1} \log ^{q}(1 / t)$, then:
(i) $\liminf _{t \downarrow 0}\left(C_{t+\tau_{\gamma_{0}}}^{\prime}-\gamma_{0}\right) / f(t)=\infty$ for $q<-1$,
(ii) $\liminf _{t \downarrow 0}\left(C_{t+\tau_{\gamma_{0}}}^{\prime}-\gamma_{0}\right) / f(t)=0$ and $\lim \sup _{t \downarrow 0}\left(C_{t+\tau_{\gamma_{0}}}^{\prime}-\gamma_{0}\right) / f(t)=\infty$ for

$$
q \in[-1,(1 / \alpha-1) / \rho)
$$

Regime (FS): Behaviour at vertex time τ_{s}

Corollary 8.1

Suppose $x^{\alpha} \nu([x, \infty)) \rightarrow c_{+}>0$ and $x^{\alpha} \nu((-\infty,-x]) \rightarrow c_{-}$for some $\alpha \in(0,1)$, and denote $\rho:=\lim _{t \downarrow 0} \mathbb{P}\left(X_{t}>\gamma_{0} t\right) \in(0,1]$ where $\gamma_{0}:=\lim _{t \downarrow 0} X_{t} / t$. Set $f(t):=t^{1 / \alpha-1} \log ^{q}(1 / t)$, then:
(i) $\liminf _{t \downarrow 0}\left(C_{t+\tau_{\gamma_{0}}}^{\prime}-\gamma_{0}\right) / f(t)=\infty$ for $q<-1$,
(ii) $\liminf _{t \downarrow 0}\left(C_{t+\tau_{\gamma_{0}}}^{\prime}-\gamma_{0}\right) / f(t)=0$ and $\lim \sup _{t \downarrow 0}\left(C_{t+\tau_{\gamma_{0}}}^{\prime}-\gamma_{0}\right) / f(t)=\infty$ for

$$
q \in[-1,(1 / \alpha-1) / \rho)
$$

(iii) $\lim \sup _{t \downarrow 0}\left(C_{t+\tau_{s}}^{\prime}-s\right) / f(t)=0$ for $q>(1 / \alpha-1) / \rho$.
D. Bang, J. G. González Cázares, A. Mijatović. " How smooth can the convex hull of a Lévy path be" (2022). https://arxiv.org/abs/2206.09928

Is C r-Hölder continuous $\left(\sup _{0 \leq u<t \leq T} \frac{\left|C_{t}-C_{u}\right|}{(t-u)^{r}}<\infty\right.$ a.s.)?
Blumenthal-Getoor index of X is critical: $\beta:=\inf \left\{p>0: \int_{(-1,1)}|x|^{p} \nu(\mathrm{~d} x)<\infty\right\}$

Lévy process X			$r \in(0,1]$	Is C r-Hölder continuous?
$\sigma^{2}>0$			$0<r<1 / 2$	Yes
			$1 / 2 \leq r \leq 1$	No
$\sigma^{2}=0$		[0, 1] and FV	$0<r \leq 1$	Yes
		$=1$ and IV	$0<r<1$	Yes
		$=1$ and V	$r=1$	No
		${ }^{\beta}{ }^{\prime}$	$0<r<1 / \beta$	Yes
	$\beta \in(1,2]$	(-1,1)	$1 / \beta \leq r \leq 1$	No
		$I_{\beta}<\infty$	$0<r \leq 1 / \beta$	Yes
		$\gamma_{\beta}<\infty$	$1 / \beta<r \leq 1$	No

where $\quad I_{\beta}:=\int_{0}^{1} \mathbb{E}\left[\min \left\{\left|X_{t}\right| / t^{1 / \beta}, 1\right\}^{\beta /(\beta-1)}\right] \frac{\mathrm{d} t}{t} \quad$ for $\beta \in(1,2]$.
D. Bang, J. G. González Cázares, A. Mijatović. "Hölder continuity of the convex minorant of a Lévy process" (2022). https://arxiv.org/abs/2207.12433
Further results
[1] David Bang, Jorge González Cázares, and Aleksandar Mijatović. "When is the convex hull of a Lévy path smooth?" (2022). DOI: 10.48550/ARXIV.2205.14416.
[2] Jean Bertoin. "Regularity of the half-line for Lévy processes". Bull. Sci. Math. 121.5 (1997), pp. 345-354. ISSN: 0007-4497.
[3] Jean Bertoin. "The convex minorant of the Cauchy process". Electron. Comm. Probab. 5 (2000), pp. 51-55. ISSN: 1083-589X. DOI: 10.1214/ECP.v5-1017. URL: https://doi.org/10.1214/ ECP.v5-1017.
[4] Jorge Ignacio González Cázares and Aleksandar Mijatović. "Convex minorants and the fluctuation theory of Lévy processes". ALEA, Lat. Am. J. Probab. Math. Stat. 19 (2022), pp. 983-999. DOI: 10.30757/ALEA.v19-39.
[5] Jim Pitman and Gerónimo Uribe Bravo. "The convex minorant of a Lévy process". Ann. Probab. 40.4 (2012), pp. 1636-1674. ISSN: 0091-1798. URL: https://doi.org/10.1214/11-A0P658.
[6] Vincent Vigon. "Abrupt Lévy processes". Stochastic Process. Appl. 103.1 (2003), pp. 155-168. ISSN: 0304-4149. DOI: 10.1016/S0304-4149(02) 00186-2. URL: https://doi . org/10. 1016/S0304-4149(02)00186-2.

