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Motivation: Non local Lotka-Volterra cross-di↵usion models

� PDE model of dispersive spatial interaction between 2 species + competition
(
@tu��(d1u+ a11uu+ a12uv) = (r1 � s11u� s12v)u,

@tv ��(d2v + a21uv + a22vv) = (r2 � s22v � s21u)v.
(SKT)

� [Shigesada, Kawasaki, Teramoto 1979]

� Global (weak) solutions: � [Galiano, Garzón, Jüngel 2003],
� [Chen, Jüngel 2004-2006], � [Chen, Daus, Jüngel 2018], � [Chen, Jüngel, Wang
2022]. Entropic structure.
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� Non-local SKT system introduced in � [F’, Méléard 2016] :
(
@tu��(d1u+ a11(u ⇤G1,1)u+ a12(v ⇤G1,2)u) = (r1 � s11u ⇤ C1,1 � s12v ⇤ C1,2)u,

@tv ��(d2v + a21(u ⇤G2,1)v + a22(v ⇤G2,2)v) = (r2 � s22v ⇤ C2,2 � s21u ⇤ C2,1)v.
(NL-SKT)

with G
i,j
, H

i,j
, C

i,j regular kernels.

� Approximation of (NL-SKT) by mean-field particles system (Individual Based
Model) via weak convergence techniques.

� Non-local ! local di↵usion terms/PDE: � [Moussa 2020], � [Dietert, Moussa 2021]

� Derivation (of related model) from mean-field particle system: � [Chen, Daus,
Holzinger, Jüngel 2020]

In this talk we stay in the probabilistic non-local setting of � [F’, Méléard 2016] and
study:

Question �

Can we quantify the approximation of non-local SKT system by individual based models?
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study:

Question �

Can we quantify the approximation of non-local SKT system by individual based models?

Motivation: cross di↵usion models, local/non-local, Lotka-Volterra (5 / 17)



� Non-local SKT system introduced in � [F’, Méléard 2016] :
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A simpler population model

Binary branching di↵usions in Rd (one species) with:

� mean-field interaction in di↵usion and drift

� logistic (global) competition

Population process (µ
K
t )t�0 : measure valued process µK

t =
1

K

NK
tX

n=1

�
Xn,K

t
2 M+(Rd

),

� N
K
t := KhµK

t , 1i number individuals alive at time t � 0, K > 0 “carrying capacity”.

� X
1,K
t , . . . , X

N
K
t ,K

t the individuals’ positions in Rd.

Dynamics

� Random initial measure µ
K
0 .

� � Individuals carry independent reproduction clock of parameter r > 0:
µ
K
t� 7! µ

K
t = µ

K
t� +

1
K �x if indiv. located at x 2 Rd reproduces, and

� (conditionally) independent killing clock of parameter cNK
t /K for c > 0:

µ
K
t� 7! µ

K
t = µ

K
t� � 1

K �x if indiv. located at x 2 Rd dies.

� Between birth and death events the individual Xn,K evolves as the di↵usion process

dX
n,K
t = b

�
X

n,K
t , H ⇤ µK

t (X
n,K
t )

�
dt+ �

�
X

n,K
t , G ⇤ µK

t (X
n,K
t )

�
dB

n
t .
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Remark: (N
K
t )t�0 is a logistic branching process.

Theorem (F’ , Méléard ’16, particular case)

Under Lipschitz regularity on �, b, G, and H, moment assumptions on (µ
K
0 )K and weak

convergence µ
K
0 ! µ0 2 M+(Rd

), processes (µ
K
t )t�0 converge weakly as K ! 1 to

(µt)t�0, the unique weak solution of

@tµt = L
⇤
µtµt + (r � chµt, 1i)µt,

with i.c. µ0, where

Lµf(x) =
1

2
Tr (a(x,G ⇤ µ(x))Hess(f)(x)) + b(x,H ⇤ µ(x)) ·rf(x).

Remarks:

� (N
K
t /K)t�0 converges to nt := hµt, 1i solution of logistic ODE ṅt = nt(r � cnt)

� µ̄t := µt/hµt, 1i satisfies nonlinear di↵usion equation of McKean-Vlasov type:

@tµ̄t = L
⇤
µt µ̄t

with i.c. µ̄0 := µ0/hµ0, 1i.
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Main result

Assumptions : same as before, plus:

� Conditionally on N
K
0 , atoms of µK

0 are i.i.d. ⇠ µ̄0 := µ0/hµ0, 1i, µ0 2 M+(Rd
)

�
R
Rd |x|q µ0(dx) < 1 for some q > 2 and supK E(hµK

0 , 1i4) < 1.

� k · kBL⇤ dual bounded-Lipschitz norm on space M(Rd
) of finite signed measures.

Theorem (F., Muñoz, 2022, EJP)

For all K,T > 0 one has

sup

t2[0,T ]
E
���µK

t � µt

��
BL⇤

�
 CT (I4(K) +Rq,d(K))

where CT > 0, Rq,d(K) is an explicit polynomial function ! 0 as K ! 1 and

I4(K) = E
�
|hµK

0 , 1i � hµ0, 1i|4
� 1

4 is a smaller term.

More important than making Rq,d(K) explicit is.....
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Where does the rate Rd,q(K) come from?

Recall:

� Wasserstein distance: p 2 [1,1), p-Wasserstein distance Wp(µ, ⌫) between
µ, ⌫ 2 P(Rd

) defined by

Wp(µ, ⌫) =

✓
inf

⇡2⇧(µ,⌫)

Z

Rd⇥Rd
|x� y|p ⇡(dx, dy)

◆ 1
p

.

⇧(µ, ⌫) set of probability laws over Rd ⇥Rd with µ and ⌫ as 1st and 2nd marginals .

For any X ⇠ µ, Y ⇠ ⌫ on common probability space, Wp(µ, ⌫)  E(|X � Y |p)
1
p

Optimal coupling ⇡ 2 ⇧(µ, ⌫) realizing infimum always exists

� � [Fournier, Guillin 2015]: Quantitative L.L.N. for empirical distributions :

(Zi)i�1 i.i.d. ⇠ m 2 P(Rd
) with q�moment Mq < 1, q > 2.

Then, for some Cd,q > 0 and all N 2 N \ {0},

E
✓
W

2
2

✓
1

N

NX

i=1

�Zi ,m

◆◆
 Cd,qM

2
q
q (m)R

2
d,q(N).
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Where does the rate Rd,q(K) come from?

For all K > 0 one has

Rd,q(K) =

8
>><

>>:

K
� 1

4 +K
� (q�2)

2q , if d < 4 and q 6= 4,

K
� 1

4 (log(1 +K))
1
2 +K

� (q�2)
2q , if d = 4 and q 6= 4,

K
� 1

d +K
� (q�2)

2q , if d > 4 and q 6= d
(d�2) ,

Main result (12 / 17)



1. Motivation: cross di↵usion models, local/non-local, Lotka-Volterra

2. Mean-field interacting branching di↵usions

3. Main result

4. Idea of the proof

Idea of the proof (13 / 17)



Basic ingredients

� If µ̄, ⌫̄ 2 P(Rd
) are normalized versions of µ, ⌫ 2 M(Rd

), then

kµ� ⌫kBL⇤  hµ, 1iW1(µ̄, ⌫̄) + |hµ, 1i � h⌫, 1i|

� Bound easily obtained at t = 0 from Fournier-Guillin’s result and conditional

independence of atoms of µK
0 given mass NK

0
K :

E
⇣
kµK

0 � µ0kBL⇤

⌘
 C E

⇣
N

K
0

K
W

2
2

�
µ̄
K
0 , µ̄0

�⌘ 1
2E

⇣
N

K
0

K

⌘ 1
2
+ E

���hµK
0 , 1i � hµ0, 1i

���,

 C Rq,d(K) + E
���hµK

0 , 1i � hµ0, 1i
���

No longer true for t > 0 !!!
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Main ingredient

� COUPLING: construct on the same probability space as (µK
t )t�0 process (⌫K

t )t�0

such that

i) ⌫
K
0 = µ

K
0 and Kh⌫K

t , 1i = KhµK
t , 1i for all t � 0 almost surely.

ii) For each t � 0, conditionally on h⌫K
t , 1i, atoms of ⌫K

t are i.i.d. of law µ̄t solving
@tµ̄t = L

⇤
µt µ̄t.

� Then, result boils down to control E of :

N
K
t

K
W

2
2 (µ̄

K
t , µ̄t)  2

N
K
t

K
W

2
2 (⌫̄

K
t , µ̄t) + 2

N
K
t

K
W

2
2 (µ̄

K
t , ⌫̄

K
t ).

� To grant i) use same P.P.M. for birth/death times of (µK
t )t�0 and (⌫

K
t )t�0.

� To grant ii) atoms of ⌫K
t =

1
K

PNK
t

n=1 �Y n,K
t

must be independent di↵usions

dY
n,K
t = b

�
Y

n,K
t , H ⇤ µt(Y

n,K
t )

�
dt+ �

�
Y

n,K
t , G ⇤ µt(Y

n,K
t )

�
dB

n
t .

so that Law(Y n,K
t ) = µ̄t, and we must chose Y

n,K
⌧ ⇠ µ̄⌧ at its birth time ⌧ .
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⌧� + Gronwall ) remainder terms of order Rd,q(K) too.
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Thank you!
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