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Motivation: Non local Lotka-Volterra cross-diffusion models

> PDE model of dispersive spatial interaction between 2 species + competition

{atu — A(diu + ar1uu + a12uv) = (r1 — S11U — S120)U, (SKT)

Orv — A(d2v + a21uv + a22vv) = (T2 — S22V — S21U)V.

B [Shigesada, Kawasaki, Teramoto 1979]
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Motivation: Non local Lotka-Volterra cross-diffusion models

> PDE model of dispersive spatial interaction between 2 species + competition

{atu — A(diu + ar1uu + a12uv) = (r1 — S11U — S120)U, (SKT)

Ov — A(dav + a21uv + a22vv) = (r2 — S220 — S21U)V.
B [Shigesada, Kawasaki, Teramoto 1979]

> Global (weak) solutions: @ [Galiano, Garzdn, Jiingel 2003],
B [Chen, Jiingel 2004-2006], B [Chen, Daus, Jiingel 2018], @ [Chen, Jiingel, Wang
2022]. Entropic structure.
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> Non-local SKT system introduced in @ [F’, Méléard 2016] :
{3tu — A(diu+ar(ux GPHu+ arp(v* GH?)u) = (r1 — s11ux CH — sj00 % CH 2y,

Orv — A(d2v + ag1 (u * G2’1)v + ag2 (v * G2’2)v) = (r2 — s220v * C%2 — sprux Cz’l)v.
o (NL-SKT)
with G*7 H"7 C*’ regular kernels.
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> Non-local SKT system introduced in @ [F’, Méléard 2016] :
{aw — A(diu+ain(ux GHu+arg(vx GH?)u) = (r1 — spux OV = s1v CH2)u,

Orv — A(d2v + ag1 (u * G2’1)v + ag2 (v * Gz’z)v) = (r2 — s220v * C%2 — so1u * Cz’l)v.
S (NL-SKT)
with G*7 H"7 C*’ regular kernels.

> Approximation of (NL-SKT) by mean-field particles system (Individual Based
Model) via weak convergence techniques.

> Non-local — local diffusion terms/PDE: @ [Moussa 2020], @ [Dietert, Moussa 2021]
> Derivation (of related model) from mean-field particle system: B [Chen, Daus,

Holzinger, Jiingel 2020]

In this talk we stay in the probabilistic non-local setting of B[F’, Méléard 2016] and
study:

Question Q

Can we quantify the approximation of non-local SKT system by individual based models?

Motivation: cross diffusion models, local/non-local, Lotka-Volterra
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N

1
Population process (ji{);>0 : measure valued process pE == E Oyn.Kk € M+(Rd),
- K —1 X
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A simpler population model

Binary branching diffusions in R¢ (one species) with:
> mean-field interaction in diffusion and drift

> logistic (global) competition
1 3
. K . K _ L d
Population process (i; )¢>0 : measure valued process y; = 174 ZI(;X?,K € M4 (RY),
> NE = K(,u,{K7 1) number individuals alive at time ¢t > 0, K > 0 “carrying capacity” .

K
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Population process (/£ );>0 : measure valued process ul = % ZI5X:,,K € M+(]Rd),
> NS = K{(uf,1) number individuals alive at time t > 0, K ; 0 “carrying capacity”.

K
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A simpler population model

Binary branching diffusions in R? (one species) with:
> mean-field interaction in diffusion and drift
> logistic (global) competition
R
Population process (/£ );>0 : measure valued process ul = % ZI5X:,,K € M+(]Rd),
> NS = K{(uf,1) number individuals alive at time t > 0, K ; 0 “carrying capacity”.

K
> XE’K, .. ,X,fv‘ X the individuals’ positions in RY.

Dynamics
> Random initial measure .

> (O Individuals carry independent reproduction clock of parameter r > 0:
pts = pf = pfs + £6, if indiv. located at x € R? reproduces, and

® (conditionally) independent killing clock of parameter cN¥ /K for ¢ > 0:
pis = pf = pfs — L6, if indiv. located at x € R dies.

> Between birth and death events the individual X™ evolves as the diffusion process
dx;" 5 = b(X5 H s« gt (X)) dt + o (X005, G ol (X0F)) dBY

Mean-field interacting branching diffusions (7/17)



Remark: (N/€):>( is a logistic branching process.
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Remark: (N{);>¢ is a logistic branching process.

Theorem (F' , Méléard '16, particular case)

Under Lipschitz regularity on o,b,G, and H, moment assumptions on (u{){)x and weak
convergence uf — po € My (R?), processes (uf);>o converge weakly as K — oo to
(pt)t>0, the unique weak solution of

Oepe = Li, pe + (r — (e, 1)) e,

with i.c. po, where

Luf(@) = 5T (a(z, G = () Hess(F)(z)) + bz, H * u(z)) - V().

Remarks:
> (N /K)i>0 converges to ns := (jut, 1) solution of logistic ODE 7 = ns(r — cnyt)

> [t := pe/(ue, 1) satisfies nonlinear diffusion equation of McKean-Vlasov type:
Ocfiv = L, ir
with i.c. fio := po/(po, 1).
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Main result

Assumptions : same as before, plus:
> Conditionally on N5, atoms of pf are i.i.d. ~ fio := po/ (o, 1), o € My (R?)
> [oal2|? po(dz) < oo for some ¢ > 2 and sup, E({ug,1)*) < oc.

> || - |lsr+ dual bounded-Lipschitz norm on space M(R?) of finite signed measures.
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> [oal2|? po(dz) < oo for some ¢ > 2 and sup, E({ug,1)*) < oc.

> || - |lsr+ dual bounded-Lipschitz norm on space M(R?) of finite signed measures.

Theorem (F., Mufioz, 2022, EJP)
For all K,T' > 0 one has

sup E(Huf{ — ,LLtHBL*) < Cr (Ia(K) + Ry,a(K))
t€[0,T]

where Cr > 0, Rq,q(K) is an explicit polynomial function — 0 as K — oo and

1
L(K) =E(|(u, 1) — (po, 1)|*) * is a smaller term.
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> Conditionally on N5, atoms of pf are i.i.d. ~ fio := po/ (o, 1), o € My (R?)
> [oal2|? po(dz) < oo for some ¢ > 2 and sup, E({ug,1)*) < oc.

> || - |lsr+ dual bounded-Lipschitz norm on space M(R?) of finite signed measures.

Theorem (F., Mufioz, 2022, EJP)
For all K,T' > 0 one has

sup E(Huf{ — 'U’tHBL*) < Cr (Ia(K) + Ry,a(K))
t€[0,T]

where Cr > 0, Rq,q(K) is an explicit polynomial function — 0 as K — oo and

1
L(K) =E(|(u, 1) — (po, 1)|*) * is a smaller term.
More important than making R, 4(K) explicit is.....
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Where does the rate Rq,(K) come from?

Recall:

> Wasserstein distance: p € [1,00), p-Wasserstein distance W, (u, ) between
w,v € P(R?) defined by

1
Wp(p,v) = < inf / |z —y|? W(dm,dy)) "
R4 xR4

mell(p,v)

II(u, v) set of probability laws over R? x R? with i and v as 1st and 2nd marginals .
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II(p, v) set of probability laws over R? x R? with i and v as 1st and 2nd marginals .
For any X ~ p, Y ~ v on common probability space, Wy (u,v) < E(|X — Y|p)%

Optimal coupling m € I1(p, v) realizing infimum always exists
> @[Fournier, Guillin 2015]: Quantitative L.L.N. for empirical distributions :
(Zi)i>1 i.id. ~m € P(R?) with g—moment M, < oo, ¢ > 2.

Then, for some Cq,y > 0 and all N € N\ {0},

N
1 2
E<W22(N E 6Zi7m>) < Ca,gMy' (m) RS,q(N)-
i=1
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Where does the rate Rq,(K) come from?

For all K > 0 one has

1 _(@=2) )
K 14+ K 20, ifd<4andq#4,
(a—2)
Rag(K)={ K~ i(log(1+ K))? + K~ 20, ifd=4and q # 4,
(9—2)
K—%+K*q2q2, ifd>4andq;£ﬁ,

Main result (12 / 17)
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> If 4,7 € P(RY) are normalized versions of p, v € M(R?), then

[ = vllBLe < (w, YW (5, 2) + (1, 1) = (v, 1)

> Bound easily obtained at t = 0 from Fournier-Guillin's result and conditional

. . NE
independence of atoms of u{’ given mass -

NK 1 NK 1
E (Iug" = nollsr- ) < CE(=2W3 (38 i) ) "E(5) * +E(| (a8, 1) = (0, 1)),

< C Rya(K) +E([(16 1) = (po, 1))

No longer true for ¢t > 0 !l

Idea of the proof (14 / 17)
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ii) For each t > 0, conditionally on (v, 1), atoms of v are i.i.d. of law fi; solving
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> COUPLING: construct on the same probability space as (uf*)i>o process (v£):>0
such that

i) 18 = pt and K(vf,1) = K{uf, 1) for all t > 0 almost surely.
ii) For each t > 0, conditionally on (v, 1), atoms of v are i.i.d. of law fi; solving
Ocfiz = thﬁt-

> Then, result boils down to control E of :

N

NtK 2,_K - NE ok Kk
W2 (A, ) < 2=2W3 (0, i) + 2= W3 (i, 7).
K K
> To grant i) use same P.P.M. for birth/death times of (u{()tzo and (VtK)tzo-

> To grant ii) atoms of v = e Zn 1 Yn x must be independent diffusions
AV = b (VR H x e (YF)) dt 4 o (Y, G e (YV0F)) dBY

so that Law(Y;""™) = /i, and we must chose Y;*X ~ i, at its birth time 7.
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Main ingredient

NE 2/—-K — ..
> Term —=-W5 (%", ir): OK similarly as for t = 0.
K K
> Need a good control E(NT’WQQ(ﬁf, DtK)) < E(% SN xR - Yt"’K||2).

> Using same BM B} to drive (X;"™,Y;™) + Lipschitz coefficients +Gronwall, this
boils down to couple birth positions (X% ¥Y¥) optimally at birth time 7.
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Main ingredient

NE o K . P _
> Term —=-W5 (%", ir): OK similarly as for t = 0.
K K
> Need a good control IE(NT’WQQ([Lf(, DtK)) < E(% SN xR - Yt”’KHQ).
> Using same BM B} to drive (X;"™,Y;™) + Lipschitz coefficients +Gronwall, this
boils down to couple birth positions (X% ¥Y¥) optimally at birth time 7.

> Noting that X™% ~ X while Y% ~ i, we can use

> @[Cortez, Fontbona 2016]'s coupling Lemma to sample at each birth time 7 a pair
(XK Y)Y from the optimal coupling w.r.t. Wy between aX_ and fi,
(“measurably” ....)
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NE 2/—-K — ..
> Term —=-W5 (%", ir): OK similarly as for t = 0.
K K
> Need a good control E(%Wf(ﬁf{, DtK)) < E(% SN xR - Yt”’KHQ).

> Using same BM B} to drive (X;"™,Y;™) + Lipschitz coefficients +Gronwall, this
boils down to couple birth positions (X% ¥Y¥) optimally at birth time 7.

> Noting that X™% ~ X while Y% ~ i, we can use

> @[Cortez, Fontbona 2016]'s coupling Lemma to sample at each birth time 7 a pair
(XK Y)Y from the optimal coupling w.r.t. Wy between aX_ and fi,
(“measurably” ....)

> Drawing

> Triangle ineq. with 7% + Gronwall = remainder terms of order Ry ,(K) too.
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Idea of the proof
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