## The standard augmented multiplicative coalescent revisited

Josué Corujo Rodríguez
work in collaboration with Vlada Limic

Journées de Probabilités 2023, Angers, France

## A multi-graph valued Markov process

$\left(M G^{(n)}(t), t \geq 0\right) \quad$ multi-graph-valued continuous-time Markov chain

- $n$ vertices and i-th vertex has size $x_{i}$
- number of edges $i \rightarrow j$ at time $t: N_{\{i, j\}}(t) \quad$ Poisson process wit


## A multi-graph valued Markov process

$\left(M G^{(n)}(t), t \geq 0\right) \quad$ multi-graph-valued continuous-time Markov chain

- $n$ vertices and i-th vertex has size $x_{i}$
- number of edges $i \rightarrow j$ at time $t: N_{\{i, j\}}(t)$

Poisson process with rate

and self-loops

Inhomogeneous random graph:

$$
\mathbb{P}\left[\{i, j\} \in G^{(n)}(t)\right]=1-\mathrm{e}^{-t \cdot x_{i} \cdot x_{j}}
$$



## The multiplicative coalescent (MC)

$\left(M G^{(n)}(t), t \geq 0\right)$ multi-graph-valued continuous-time Markov chain $C_{i}^{(n)}(t)$ i-th largest component of $M G^{(n)}(t)$ and also $G^{(n)}(t)$ $\Rightarrow\left(\left(\left|C_{1}^{(n)}(t)\right|,\left|C_{2}^{(n)}(t)\right|, \ldots\right), t \geq 0\right) \quad$ Markov process with MC dynamic

$$
X_{i}, \ldots, X_{j} \rightsquigarrow X_{i}+X_{j}
$$

with rate $X_{i} \cdot X_{j}$


The MC dynamic is encoded by the excursions of a Lévy-type process

The multiplicative coalescent is encoded by the excursions above infima of

$$
Z^{\boldsymbol{x}, t}(s):=\sum_{i=1}^{n} x_{i} \cdot \mathbf{1}_{\left\{\xi_{i} / t \leq s\right\}}-s \quad \text { where } \quad \xi_{i} \sim \operatorname{Exp}\left(\text { rate }=x_{i}\right)
$$

or equivalently by the excursions above zero of the reflected process

$$
B^{x, t}(s):=Z^{x, t}(s)-\inf _{0 \leq u \leq s} Z^{x, t}(u)
$$




The simultaneous breadth-first walk


Limic (2019)
$(\boldsymbol{X}(t), t \geq 0)$ is a multiplicative coalescent started from $\boldsymbol{x}$

## Our results

$\Longrightarrow$ Enrich the encoding to account for the sizes of the connected components and the number of surplus edges
(augmented multiplicative coalescent)


## Our results

$\Longrightarrow$ Enrich the encoding to account for the sizes of the connected components and the number of surplus edges
(augmented multiplicative coalescent)


## Our results

$\Longrightarrow$ Enrich the encoding to account for the sizes of the connected components and the number of surplus edges
(augmented multiplicative coalescent)


## Our results

$\Longrightarrow$ Enrich the encoding to account for the sizes of the connected components and the number of surplus edges (augmented multiplicative coalescent)

$\Longrightarrow$ Study the scaling limits of the augmented multiplicative coalescent

## Our results

$\Longrightarrow$ Enrich the encoding to account for the sizes of the connected components and the number of surplus edges (augmented multiplicative coalescent)

```
ar\iV > math > arxiv:2305.04716
```

Mathematics > Probability
[Submitted on 8 May 2023]
A dynamical approach to spanning and surplus edges of random graphs Josué Corujo, Vlada Limic

$\Longrightarrow$ Study the scaling limits of the augmented multiplicative coalescent


## The augmented multiplicative coalescent (AMC)

$\left(M G^{(n)}(t), t \geq 0\right)$ multi-graph-valued continuous-time Markov chain $C_{i}^{(n)}(t)$ size of the i-th largest component of $M G^{(n)}(t)$ and also $G^{(n)}(t)$ $\mathrm{SP}\left(C_{i}^{(n)}(t)\right)$ number of surplus edges in the i-th largest component of $M G^{(n)}(t)$ $\Longleftrightarrow\left(\left(\left|C_{i}^{(n)}(t)\right|, \operatorname{SP}\left(C_{i}^{(n)}(t)\right)\right)_{i \geq 1}, t \geq 0\right)$ Markov process with AMC dynamic:

## The augmented multiplicative coalescent (AMC)

$\left(M G^{(n)}(t), t \geq 0\right)$ multi-graph-valued continuous-time Markov chain $C_{i}^{(n)}(t)$ size of the i-th largest component of $M G^{(n)}(t)$ and also $G^{(n)}(t)$ $\mathrm{SP}\left(C_{i}^{(n)}(t)\right)$ number of surplus edges in the i-th largest component of $M G^{(n)}(t)$ $\Longleftrightarrow\left(\left(\left|C_{i}^{(n)}(t)\right|, \operatorname{SP}\left(C_{i}^{(n)}(t)\right)\right)_{i \geq 1}, t \geq 0\right)$ Markov process with AMC dynamic:

$$
\begin{gathered}
\left(X_{i}, N_{i}\right), \ldots,\left(X_{j}, N_{j}\right) \rightsquigarrow\left(X_{i}+X_{j}, N_{i}+N_{j}\right) \\
\text { with rate } X_{i} \cdot X_{j}
\end{gathered}
$$



## The augmented multiplicative coalescent (AMC)

$\left(M G^{(n)}(t), t \geq 0\right)$ multi-graph-valued continuous-time Markov chain $C_{i}^{(n)}(t)$ size of the i-th largest component of $M G^{(n)}(t)$ and also $G^{(n)}(t)$ $\mathrm{SP}\left(C_{i}^{(n)}(t)\right)$ number of surplus edges in the i-th largest component of $M G^{(n)}(t)$ $\Longleftrightarrow\left(\left(\left|C_{i}^{(n)}(t)\right|, \mathrm{SP}\left(C_{i}^{(n)}(t)\right)\right)_{i \geq 1}, t \geq 0\right)$ Markov process with AMC dynamic:

$$
\begin{gathered}
\left(X_{i}, N_{i}\right), \ldots,\left(X_{j}, N_{j}\right) \rightsquigarrow\left(X_{i}+X_{j}, N_{i}+N_{j}\right) \\
\text { with rate } X_{i} \cdot X_{j}
\end{gathered}
$$




$$
\left(X_{i}, N_{i}\right) \rightsquigarrow\left(X_{i}, N_{i}+1\right)
$$

with rate $X_{i}^{2} / 2$


The encoding of the AMC

$$
Z^{\boldsymbol{x}, t}(s):=\sum_{i=1}^{n} x_{i} \cdot \mathbf{1}_{\left\{\xi_{i} / t \leq s\right\}}-s \quad \text { where } \quad \xi_{i} \sim \operatorname{Exp}\left(\text { rate }=x_{i}\right)
$$

$$
N_{i}(t)=\operatorname{Poisson}\left(A_{i}(t)\right)
$$

## C. and Limic (2023+)

$$
\begin{aligned}
& \qquad\left(X_{i}(t), N_{i}(t)\right)_{i \geq 1} \\
& \text { has the law of an augmented multiplicative } \\
& \text { coalescent started from }(\boldsymbol{x}, \mathbf{0}) \text {, at time } t
\end{aligned}
$$



## An application

## Erdös-Rényi random graph:

$\mathbb{P}[\{i, j\} \in G(n, p)]=p$
independently, for every pair of vertices

$$
C_{i}^{(n)} \text { i-th largest component of } G(n, p)
$$

## Erdös-Rényi (1960), Bollobás (1985)



## Evolution of $\left(G^{(n)}(t / n), t \geq 0\right)$ for $n=1000$



## The standard augmented multiplicative coalescent

## Critical regime

$$
\begin{array}{ll}
x_{i}^{(n)}=n^{-2 / 3} & \text { mass of each vertices } \\
q_{n}(t)=n^{1 / 3}+t & \text { rescaled critical time }
\end{array}
$$



$$
t_{n}=\frac{1}{n}+\frac{t}{n^{4 / 3}} \text { with } t \in \mathbb{R} \quad \Theta\left(n^{2 / 3}\right)
$$

Metric associated to the AMC (Bhamidi et al. (2014))
a bit more complicated...
Aldous (1997), Bhamidi et al. (2014),
Broutin and Marckert (2016)

$$
\mathrm{d}\left(\left(x_{i}, n_{i}\right)_{i \geq 1},\left(x_{i}^{\prime}, n_{i}^{\prime}\right)_{i \geq 1}\right)=\sum_{n=1}^{\infty}\left(x_{i}-x_{i}^{\prime}\right)^{2}+\sum_{\substack{n=1 \\ \text { already done } \\ \text { Aldous (1997), Limic (2019) }}}^{\infty}\left|x_{i} \cdot n_{i}-x_{i}^{\prime} \cdot n_{i}^{\prime}\right|
$$

C. and Limic (2023+)

$$
\mathrm{d}\left(\left(X_{i}^{(n)}\left(q_{n}(t)\right), N_{i}^{(n)}\left(q_{n}(t)\right)\right)_{i \geq 1},\left(\mathcal{X}_{i}(t), \mathcal{N}_{i}(t)\right)_{i \geq 1}\right) \xrightarrow[n \rightarrow \infty]{\text { law }} 0
$$

C. and Limic (2023+)

$$
\mathrm{d}\left(\left(X_{i}^{(n)}\left(q_{n}(t)\right), N_{i}^{(n)}\left(q_{n}(t)\right)\right)_{i \geq 1},\left(\mathcal{X}_{i}(t), \mathcal{N}_{i}(t)\right)_{i \geq 1}\right) \xrightarrow[n \rightarrow \infty]{\text { law }} 0
$$

$$
\begin{array}{ll}
W^{t}(s)=W(s)-\frac{1}{2} s^{2}+t \cdot s & \text { Brownian motion with drift } \\
B^{t}(s)=W^{t}(s)-\inf _{0 \leq u \leq s} W^{t}(u) & \text { reflected BM with drift }
\end{array}
$$

$$
\Lambda=\text { homogeneous Poisson point process on } \mathbb{R}_{+}^{2}
$$

$\mathcal{X}_{i}(t)$ size of the i-th largest excursion of $B^{t}$
$\mathcal{N}_{i}(t)$ number of marks of $\Lambda$ below $B^{t}$ during the excursion associated to $\mathcal{X}_{i}(t)$

The same result is valid for the multi-graph and the Erdös-Rényi graph valued processes



size of the excursions number of marks below the curve

size of the excursions number of marks below the curve

size of the excursions number of marks below the curve


## C. and Limic (2023+)



- known/expected result (Aldous (1997), Bhamidi et al. (2014), Broutin and Marckert (2016)) new methods, simpler and potentially extensible for studying the dynamics of more general (inhomogeneous) models

