Iterated Proportional Fitting Procedure and infinite products of stochastic matrices

Christophe Leuridan

juin 2023

Journées de probabilités

Christophe Leuridan

Biproportional Fitting

- **2** Iterated Proportional Fitting Procedure
- Sketch of proof

Initial problem.

Let $p \ge 2$ and $q \ge 2$ be two integers. We are given:

- two target marginals $a \in (\mathbf{R}^*_+)^p$, $b \in (\mathbf{R}^*_+)^q$ such that $a_1 + \cdots + a_p = b_1 + \cdots + b_q = 1$,
- a matrix X₀ ∈ M_{p,q}(R₊). One may assume that the entries add up to 1.

Call $\Gamma(a, b, X_0)$ the set of all matrices $X \in \mathcal{M}_{p,q}(\mathbf{R}_+)$ with support contained in $\mathrm{Supp}(X_0)$ such that

$$orall i \in [1, p], \qquad X(i, +) := \sum_{j=1}^{q} X(i, j) ext{ equals } a_i,$$

 $orall j \in [1, q], \qquad X(+, j) := \sum_{i=1}^{p} X(i, j) ext{ equals } b_j.$

We look for a matrix $X \in \Gamma(a, b, X_0)$ as close to X_0 as possible:

• we want X to be diagonally equivalent to X_0 , namely $X = D_1 X_0 D_2$ for some diagonal matrices $D_1 \in \mathcal{M}_p(\mathbf{R}^*_+)$ and $D_2 \in \mathcal{M}_q(\mathbf{R}^*_+)$ (biproportional fitting);

• equivalently, we want to minimize the relative entropy

$$D(X||X_0) := \sum_{(i,j)\in \text{Supp}(X_0)} X(i,j) \ln \frac{X(i,j)}{X_0(i,j)}.$$

Concrete application: estimation of origin/destination matrix on a public bus line

X(i,j) = proportion of population going from station *i* to station *j*. $X_0(i,j) =$ rough estimation.

 $a_i = proportion of users getting in at station i (well known)$

 $b_j = proportion of users getting out at station j (well known)$

Probabilistic interpretation We view *a*, *b* and X_0 as probability measures on [1, p], [1, q] and $[1, p] \times [1, q]$. So we look at couplings of *a* and *b* with support contained in $\text{Supp}(X_0)$.

- Existence of such couplings?
- Existence and uniqueness of a coupling X minimizing $D(X||X_0)$?
- How to approach it?

Note that set $\Gamma(a, b, X_0)$ is a compact (convex) polyedron in $\mathcal{M}_{p,q}(\mathbf{R})$, possibly empty. Fourier or Farkas' lemma applies.

For $A \subset \llbracket 1, p \rrbracket$ and $B \subset \llbracket 1, q \rrbracket$, we set

$$\mathsf{a}(A):=\sum_{i\in A}\mathsf{a}_i,\quad \mathsf{b}(B):=\sum_{i\in A}\mathsf{b}_j.$$

Cause of incompatibility: two (non-empty) subsets $A \subset [1, p]$ and $B \subset [1, q]$ such that X_0 is null on $A \times B$ and a(A) + b(B) > 1.

$$X_0 = \begin{pmatrix} & | & 0 \\ - & - \\ & | & \end{pmatrix} \begin{cases} A^c \\ A^c \\ A^c \end{cases}$$

Cause of criticality: two non-empty subsets $A \subset [1, p]$ and $B \subset [1, q]$ such that X_0 is null on $A \times B$ and a(A) + b(B) = 1. This forces matrices in $\Gamma(a, b, X_0)$ to be null on $A^c \times B^c$.

Theorem (Bacharach, Pukelsheim)

Three situations may occur.

- (Nice case) If there is no cause of incompatibility neither criticality, then Γ(a, b, X₀) contains some matrix with same support as X₀.
- (Critical case) If there is no cause of incompatibility but some cause of criticality, then Γ(a, b, X₀) is not empty and contains only matrices with support strictly included in Supp(X₀).
- (Case of incompatibility) If there is some cause of incompatibility, then, Γ(a, b, X₀) is empty.

The IPFP, introduced in 1937 by Kruithof, works as follows. Call $\Gamma(*, *, *)$ the set of all non-negative $p \times q$ matrices having positive sum on each row or column. For $X \in \Gamma(*, *, *)$, $i \in [1, p]$ and $i \in [1, q]$, set $R_i(X) := a_i^{-1}X(i,+), \quad C_i(X) := b_i^{-1}X(+,j).$ Define $T_R : \Gamma(*, *, *) \to \Gamma(a, *, *), T_C : \Gamma(*, *, *) \to \Gamma(*, b, *)$ by $T_R(X)(i,j) := R_i(X)^{-1}X(i,j), \quad T_C(X) := C_i(X)^{-1}X(i,j).$ Set $X_{2n+1} = T_R(X_{2n})$, $X_{2n+2} = T_C(X_{2n+1})$ for every $n \ge 0$. Does the sequence $(X_n)_{n\geq 0}$ thus defined converge? If yes, the limit X_{∞} belongs to $\Gamma(a, b, X_0)$.

Theorem (Bacharach, Bregman, Sinkhorn, Csiszar, Pretzel...)

(Nice case: fast convergence) Assume that $\Gamma(a, b, X_0)$ contains some matrix with same support as X_0 . Then

- The sequences $(R_i(X_{2n})_{n\geq 0})$ and $(C_j(X_{2n+1})_{n\geq 0})$ converge to 1 at an at least geometric rate.
- Or The sequence (X_n)_{n≥0} converges to some matrix X_∞ which has the same support as X₀. The rate of convergence is at least geometric.
- So The limit X_∞ is the only matrix in Γ(a, b, X₀) which is diagonally equivalent to X₀, or equivalently, which minimizes of D(Y||X₀) over all Y ∈ Γ(a, b, X₀).

Theorem (Bacharach, Bregman, Sinkhorn, Csiszar, Pretzel...)

Assume that $\Gamma(a, b, X_0)$ is not empty. Then

- The sequences $(R_i(X_{2n}))_{n\geq 0}$ and $((C_j(X_{2n+1}))_{n\geq 0}$ are $1 + o(n^{-1/2})$.
- Or The sequence (X_n)_{n≥0} converges to some matrix X_∞ whose support contains the support of every matrix in Γ(a, b, X₀).
- **○** The limit X_{∞} is the unique matrix achieving the minimum of $D(Y||X_0)$ over all $Y \in Γ(a, b, X_0)$.

Remark: if $\Gamma(a, b, X_0)$ contains only matrices with support strictly included in $\text{Supp}(X_0)$, the additional zeroes in X_∞ are given by the causes of criticality. One gets the same limit with a faster convergence by replacing the corresponding entries in X_0 with 0.

Theorem (Gietl and Reffel, Aas, L.)

There exist $r \in [1, \min(p, q)]$ $(r \ge 2 \text{ iff } \Gamma(a, b, X_0) \text{ is empty})$ and partitions $\{I_1, \ldots, I_r\}$ of [1, p] and $\{J_1, \ldots, J_r\}$ of [1, q] such that: • The ratios $\lambda_k := b(J_k)/a(I_k)$ increase with $k \in [1, r]$; **2** $(R_i(X_{2n}))_{n>0}$ converges to λ_k whenever $i \in I_k$; ○ $(C_i(X_{2n+1}))_{n>0}$ converges to λ_k^{-1} whenever $j \in J_k$; • When k < k', $X_n(i, j) = 0$ for every $n \ge 0$, $i \in I_k$ and $j \in J_{k'}$; **(**) When k < k', $X_n(i, j) \rightarrow 0$ for every $n \ge 0$, $i \in I_k$ and $j \in J_{k'}$; ○ $(X_{2n})_{n>0}$ converges to arg min_{Y∈Γ(a',b,X_0)} $D(Y||X_0)$, where $a'_i = \lambda_k a_i$ whenever $i \in I_k$; $(X_{2n+1})_{n>0}$ converges to arg min $_{Y \in \Gamma(a,b',X_0)} D(Y||X_0)$, where $b'_i = \lambda_k^{-1} b_j$ whenever $j \in J_k$;

The partitions $\{I_1, \ldots, I_r\}$ and $\{J_1, \ldots, J_r\}$ are algorithmically determined by the causes of incompatibility and depend only on a, b and $\text{Supp}(X_0)$.

Replacing a by a' or b by b' transforms causes of incompatibility into causes of criticality.

Let $X \in \Gamma(*, b, *)$. Then for every $j \in [1, q]$,

$$C_j(T_R(X)) = \frac{1}{b_j} \sum_{i=1}^p R_i(X)^{-1} X(i,j) = \sum_{i=1}^p \frac{X(i,j)}{b_j} R_i(X)^{-1}.$$

In the same way, each $R_i(T_C(T_R(X)))$ is a weighted mean of the quantities $C_j(T_R(X))^{-1}$, therefore a weighted hybrid mean of the quantities $R_k(X)$... In particular,

$$[\underline{R}(X), \overline{R}(X)] \supset [\overline{C}(T_R(X))^{-1}, \underline{C}(T_R(X))^{-1}] \\ \supset [\underline{R}((T_C(T_R(X))), \overline{R}((T_C(T_R(X))))].$$

This can be applied to X_2, X_4, X_6, \ldots

Lemma

Let $X \in \Gamma(*, b, *)$. Call R(X) the column vector with entries $R(X_1), \ldots, R(X_p)$. Then $R(T_C(T_R(X))) = P(X)R(X)$, where P(X) is the $p \times p$ stochastic matrix given by

$$orall i, k \in [1, p], \quad P(X)(i, k) = \sum_{j=1}^{q} rac{T_R(X)(i, j) T_R(X)(k, j)}{a_i b_j C_j(T_R(X))}$$

Moreover,

$$\forall i \in [1, p], \quad P(X)(i, i) \geq rac{a}{\overline{b} \ \overline{C}(T_R(X))q}$$

and

$$\forall i, k \in [1, p], \quad P(X)(k, i) \leq \frac{\overline{a}}{\underline{a}} P(X)(i, k).$$

Thus, the convergence of $R(X_{2n}) = P(X_{2n-2}) \cdots P(X_2)R(X_2)$ follows from the next theorem, which improves on Lorenz' stabilization theorem.

Theorem (L.)

Let $(M_n)_{n\geq 1}$ be some sequence of $d \times d$ stochastic matrices. Assume that there exists some constants $\gamma > 0$, and $\rho \geq 1$ such that for every $n \geq 1$ and i, j in [1, d], $M_n(i, i) \geq \gamma$ and $M_n(i, j) \leq \rho M_n(j, i)$. Then the sequence $(M_n \cdots M_1)_{n\geq 1}$ has a finite variation, so it converges to some stochastic matrix L. Moreover, the series $\sum_n M_n(i, j)$ and $\sum_n M_n(j, i)$ converge whenever the rows of L with indexes i and j are different.