Iterated Proportional Fitting Procedure and infinite products of stochastic matrices

Christophe Leuridan

$$
\text { juin } 2023
$$

Journées de probabilités
(1) Biproportional Fitting
(2) Iterated Proportional Fitting Procedure
(3) Sketch of proof

Initial problem.

Let $p \geq 2$ and $q \geq 2$ be two integers. We are given:

- two target marginals $a \in\left(\mathbf{R}_{+}^{*}\right)^{p}, b \in\left(\mathbf{R}_{+}^{*}\right)^{q}$ such that $a_{1}+\cdots+a_{p}=b_{1}+\cdots+b_{q}=1$,
- a matrix $X_{0} \in \mathcal{M}_{p, q}\left(\mathbf{R}_{+}\right)$. One may assume that the entries add up to 1 .
Call $\Gamma\left(a, b, X_{0}\right)$ the set of all matrices $X \in \mathcal{M}_{p, q}\left(\mathbf{R}_{+}\right)$with support contained in $\operatorname{Supp}\left(X_{0}\right)$ such that

$$
\begin{aligned}
& \forall i \in[1, p], \quad X(i,+):=\sum_{j=1}^{q} X(i, j) \text { equals } a_{i}, \\
& \forall j \in[1, q], \quad X(+, j):=\sum_{i=1}^{p} X(i, j) \text { equals } b_{j} .
\end{aligned}
$$

We look for a matrix $X \in \Gamma\left(a, b, X_{0}\right)$ as close to X_{0} as possible:

- we want X to be diagonally equivalent to X_{0}, namely $X=D_{1} X_{0} D_{2}$ for some diagonal matrices $D_{1} \in \mathcal{M}_{p}\left(\mathbf{R}_{+}^{*}\right)$ and $D_{2} \in \mathcal{M}_{q}\left(\mathbf{R}_{+}^{*}\right)$ (biproportional fitting);
- equivalently, we want to minimize the relative entropy

$$
D\left(X \| X_{0}\right):=\sum_{(i, j) \in \operatorname{Supp}\left(X_{0}\right)} X(i, j) \ln \frac{X(i, j)}{X_{0}(i, j)}
$$

Concrete application: estimation of origin/destination matrix on a public bus line $X(i, j)=$ proportion of population going from station i to station j. $X_{0}(i, j)=$ rough estimation.
$a_{i}=$ proportion of users getting in at station i (well known)
$b_{j}=$ proportion of users getting out at station j (well known)

Probabilistic interpretation We view a, b and X_{0} as probability measures on $[1, p],[1, q]$ and $[1, p] \times[1, q]$. So we look at couplings of a and b with support contained in $\operatorname{Supp}\left(X_{0}\right)$.

- Existence of such couplings?
- Existence and uniqueness of a coupling X minimizing $D\left(X \| X_{0}\right)$?
- How to approach it?

Note that set $\Gamma\left(a, b, X_{0}\right)$ is a compact (convex) polyedron in $\mathcal{M}_{p, q}(\mathbf{R})$, possibly empty. Fourier or Farkas' lemma applies.

For $A \subset[1, p]$ and $B \subset[1, q]$, we set

$$
a(A):=\sum_{i \in A} a_{i}, \quad b(B):=\sum_{i \in A} b_{j} .
$$

Cause of incompatibility: two (non-empty) subsets $A \subset[1, p]$ and $B \subset[1, q]$ such that X_{0} is null on $A \times B$ and $a(A)+b(B)>1$.

$$
x_{0}=\left(\begin{array}{ccc}
& \mid & 0 \\
- & & - \\
& \mid & \underbrace{c}_{B}
\end{array}\right\} A^{c}
$$

Cause of criticality: two non-empty subsets $A \subset[1, p]$ and $B \subset[1, q]$ such that X_{0} is null on $A \times B$ and $a(A)+b(B)=1$. This forces matrices in $\Gamma\left(a, b, X_{0}\right)$ to be null on $A^{c} \times B^{c}$.

Theorem (Bacharach, Pukelsheim)

Three situations may occur.
(1) (Nice case) If there is no cause of incompatibility neither criticality, then $\Gamma\left(a, b, X_{0}\right)$ contains some matrix with same support as X_{0}.
(2) (Critical case) If there is no cause of incompatibility but some cause of criticality, then $\Gamma\left(a, b, X_{0}\right)$ is not empty and contains only matrices with support strictly included in $\operatorname{Supp}\left(X_{0}\right)$.
(3) (Case of incompatibility) If there is some cause of incompatibility, then, $\Gamma\left(a, b, X_{0}\right)$ is empty.

The IPFP, introduced in 1937 by Kruithof, works as follows.
Call $\Gamma(*, *, *)$ the set of all non-negative $p \times q$ matrices having positive sum on each row or column.
For $X \in \Gamma(*, *, *), i \in[1, p]$ and $j \in[1, q]$, set

$$
R_{i}(X):=a_{i}^{-1} X(i,+), \quad C_{j}(X):=b_{j}^{-1} X(+, j)
$$

Define $T_{R}: \Gamma(*, *, *) \rightarrow \Gamma(a, *, *), T_{C}: \Gamma(*, *, *) \rightarrow \Gamma(*, b, *)$ by

$$
T_{R}(X)(i, j):=R_{i}(X)^{-1} X(i, j), \quad T_{C}(X):=C_{j}(X)^{-1} X(i, j)
$$

Set $X_{2 n+1}=T_{R}\left(X_{2 n}\right), X_{2 n+2}=T_{C}\left(X_{2 n+1}\right)$ for every $n \geq 0$.
Does the sequence $\left(X_{n}\right)_{n \geq 0}$ thus defined converge?
If yes, the limit X_{∞} belongs to $\Gamma\left(a, b, X_{0}\right)$.

Theorem (Bacharach, Bregman, Sinkhorn, Csiszar, Pretzel...)

(Nice case: fast convergence) Assume that $\Gamma\left(a, b, X_{0}\right)$ contains some matrix with same support as X_{0}. Then
(1) The sequences $\left(R_{i}\left(X_{2 n}\right)_{n \geq 0}\right)$ and $\left(C_{j}\left(X_{2 n+1}\right)_{n \geq 0}\right)$ converge to 1 at an at least geometric rate.
(2) The sequence $\left(X_{n}\right)_{n \geq 0}$ converges to some matrix X_{∞} which has the same support as X_{0}. The rate of convergence is at least geometric.
(3) The limit X_{∞} is the only matrix in $\Gamma\left(a, b, X_{0}\right)$ which is diagonally equivalent to X_{0}, or equivalently, which minimizes of $D\left(Y \| X_{0}\right)$ over all $Y \in \Gamma\left(a, b, X_{0}\right)$.

Theorem (Bacharach, Bregman, Sinkhorn, Csiszar, Pretzel...)

Assume that $\Gamma\left(a, b, X_{0}\right)$ is not empty. Then
(1. The sequences $\left(R_{i}\left(X_{2 n}\right)\right)_{n \geq 0}$ and $\left(\left(C_{j}\left(X_{2 n+1}\right)\right)_{n \geq 0}\right.$ are $1+o\left(n^{-1 / 2}\right)$.
(2) The sequence $\left(X_{n}\right)_{n \geq 0}$ converges to some matrix X_{∞} whose support contains the support of every matrix in $\Gamma\left(a, b, X_{0}\right)$.
(0) The limit X_{∞} is the unique matrix achieving the minimum of $D\left(Y \| X_{0}\right)$ over all $Y \in \Gamma\left(a, b, X_{0}\right)$.

Remark: if $\Gamma\left(a, b, X_{0}\right)$ contains only matrices with support strictly included in $\operatorname{Supp}\left(X_{0}\right)$, the additional zeroes in X_{∞} are given by the causes of criticality. One gets the same limit with a faster convergence by replacing the corresponding entries in X_{0} with 0 .

Theorem (Gietl and Reffel, Aas, L.)

There exist $r \in[1, \min (p, q)]\left(r \geq 2\right.$ iff $\Gamma\left(a, b, X_{0}\right)$ is empty) and partitions $\left\{I_{1}, \ldots, I_{r}\right\}$ of $[1, p]$ and $\left\{J_{1}, \ldots, J_{r}\right\}$ of $[1, q]$ such that:
(1) The ratios $\lambda_{k}:=b\left(J_{k}\right) / a\left(I_{k}\right)$ increase with $k \in[1, r]$;
(2) $\left(R_{i}\left(X_{2 n}\right)\right)_{n \geq 0}$ converges to λ_{k} whenever $i \in I_{k}$;
(3) $\left(C_{j}\left(X_{2 n+1}\right)\right)_{n \geq 0}$ converges to λ_{k}^{-1} whenever $j \in J_{k}$;
(1) When $k<k^{\prime}, X_{n}(i, j)=0$ for every $n \geq 0, i \in I_{k}$ and $j \in J_{k^{\prime}}$;
(0) When $k<k^{\prime}, X_{n}(i, j) \rightarrow 0$ for every $n \geq 0, i \in I_{k}$ and $j \in J_{k^{\prime}}$;
(0) $\left(X_{2 n}\right)_{n \geq 0}$ converges to arg $\min _{Y \in \Gamma\left(a^{\prime}, b, X_{0}\right)} D\left(Y \| X_{0}\right)$, where $a_{i}^{\prime}=\lambda_{k} a_{i}$ whenever $i \in I_{k}$;

- $\left(X_{2 n+1}\right)_{n \geq 0}$ converges to arg $\min _{Y \in \Gamma\left(a, b^{\prime}, X_{0}\right)} D\left(Y \| X_{0}\right)$, where $b_{j}^{\prime}=\lambda_{k}^{-1} b_{j}$ whenever $j \in J_{k}$;

The partitions $\left\{I_{1}, \ldots, I_{r}\right\}$ and $\left\{J_{1}, \ldots, J_{r}\right\}$ are algorithmically determined by the causes of incompatibility and depend only on a, b and $\operatorname{Supp}\left(X_{0}\right)$.
Replacing a by a^{\prime} or b by b^{\prime} transforms causes of incompatibility into causes of criticality.

Let $X \in \Gamma(*, b, *)$. Then for every $j \in[1, q]$,

$$
C_{j}\left(T_{R}(X)\right)=\frac{1}{b_{j}} \sum_{i=1}^{p} R_{i}(X)^{-1} X(i, j)=\sum_{i=1}^{p} \frac{X(i, j)}{b_{j}} R_{i}(X)^{-1}
$$

In the same way, each $R_{i}\left(T_{C}\left(T_{R}(X)\right)\right)$ is a weighted mean of the quantities $C_{j}\left(T_{R}(X)\right)^{-1}$, therefore a weighted hybrid mean of the quantities $R_{k}(X) \ldots$ In particular,

$$
\begin{aligned}
{[\underline{R}(X), \bar{R}(X)] } & \supset\left[\bar{C}\left(T_{R}(X)\right)^{-1}, \underline{C}\left(T_{R}(X)\right)^{-1}\right] \\
& \supset\left[\underline { R } \left(\left(T_{C}\left(T_{R}(X)\right)\right), \bar{R}\left(\left(T_{C}\left(T_{R}(X)\right)\right)\right]\right.\right.
\end{aligned}
$$

This can be applied to $X_{2}, X_{4}, X_{6}, \ldots$

Lemma

Let $X \in \Gamma(*, b, *)$. Call $R(X)$ the column vector with entries $R\left(X_{1}\right), \ldots, R\left(X_{p}\right)$. Then $R\left(T_{C}\left(T_{R}(X)\right)\right)=P(X) R(X)$, where $P(X)$ is the $p \times p$ stochastic matrix given by

$$
\forall i, k \in[1, p], \quad P(X)(i, k)=\sum_{j=1}^{q} \frac{T_{R}(X)(i, j) T_{R}(X)(k, j)}{a_{i} b_{j} C_{j}\left(T_{R}(X)\right)}
$$

Moreover,

$$
\forall i \in[1, p], \quad P(X)(i, i) \geq \frac{\underline{a}}{\bar{b} \bar{C}\left(T_{R}(X)\right) q}
$$

and

$$
\forall i, k \in[1, p], \quad P(X)(k, i) \leq \frac{\bar{a}}{\underline{a}} P(X)(i, k)
$$

Thus, the convergence of $R\left(X_{2 n}\right)=P\left(X_{2 n-2}\right) \cdots P\left(X_{2}\right) R\left(X_{2}\right)$ follows from the next theorem, which improves on Lorenz' stabilization theorem.

Theorem (L.)

Let $\left(M_{n}\right)_{n \geq 1}$ be some sequence of $d \times d$ stochastic matrices. Assume that there exists some constants $\gamma>0$, and $\rho \geq 1$ such that for every $n \geq 1$ and i, j in $[1, d], M_{n}(i, i) \geq \gamma$ and $M_{n}(i, j) \leq \rho M_{n}(j, i)$.
Then the sequence $\left(M_{n} \cdots M_{1}\right)_{n \geq 1}$ has a finite variation, so it converges to some stochastic matrix L. Moreover, the series $\sum_{n} M_{n}(i, j)$ and $\sum_{n} M_{n}(j, i)$ converge whenever the rows of L with indexes i and j are different.

