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Initial problem.
Let p ≥ 2 and q ≥ 2 be two integers. We are given:

two target marginals a ∈ (R∗+)p, b ∈ (R∗+)q such that
a1 + · · ·+ ap = b1 + · · ·+ bq = 1,

a matrix X0 ∈Mp,q(R+). One may assume that the entries
add up to 1.

Call Γ(a, b,X0) the set of all matrices X ∈Mp,q(R+) with support
contained in Supp(X0) such that

∀i ∈ [[1, p]], X (i ,+) :=

q∑
j=1

X (i , j) equals ai ,

∀j ∈ [[1, q]], X (+, j) :=

p∑
i=1

X (i , j) equals bj .
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We look for a matrix X ∈ Γ(a, b,X0) as close to X0 as possible:

we want X to be diagonally equivalent to X0, namely
X = D1X0D2 for some diagonal matrices D1 ∈Mp(R∗+) and
D2 ∈Mq(R∗+) (biproportional fitting);

equivalently, we want to minimize the relative entropy

D(X ||X0) :=
∑

(i ,j)∈Supp(X0)

X (i , j) ln
X (i , j)

X0(i , j)
.

Concrete application: estimation of origin/destination matrix on
a public bus line
X (i , j) = proportion of population going from station i to station j .
X0(i , j) = rough estimation.
ai = proportion of users getting in at station i (well known)
bj = proportion of users getting out at station j (well known)
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Probabilistic interpretation We view a, b and X0 as probability
measures on [[1, p]], [[1, q]] and [[1, p]]× [[1, q]]. So we look at
couplings of a and b with support contained in Supp(X0).

Existence of such couplings?

Existence and uniqueness of a coupling X minimizing
D(X ||X0)?

How to approach it?

Note that set Γ(a, b,X0) is a compact (convex) polyedron in
Mp,q(R), possibly empty. Fourier or Farkas’ lemma applies.
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For A ⊂ [[1, p]] and B ⊂ [[1, q]], we set

a(A) :=
∑
i∈A

ai , b(B) :=
∑
i∈A

bj .

Cause of incompatibility: two (non-empty) subsets A ⊂ [[1, p]]
and B ⊂ [[1, q]] such that X0 is null on A×B and a(A) + b(B) > 1.

X0 =

 | 0
− −
|

 }
A}
Ac

︸︷︷︸
Bc

︸︷︷︸
B

Cause of criticality: two non-empty subsets A ⊂ [[1, p]] and
B ⊂ [[1, q]] such that X0 is null on A× B and a(A) + b(B) = 1.
This forces matrices in Γ(a, b,X0) to be null on Ac × Bc .
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Theorem (Bacharach, Pukelsheim)

Three situations may occur.

1 (Nice case) If there is no cause of incompatibility neither
criticality, then Γ(a, b,X0) contains some matrix with same
support as X0.

2 (Critical case) If there is no cause of incompatibility but some
cause of criticality, then Γ(a, b,X0) is not empty and contains
only matrices with support strictly included in Supp(X0).

3 (Case of incompatibility) If there is some cause of
incompatibility, then, Γ(a, b,X0) is empty.
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The IPFP, introduced in 1937 by Kruithof, works as follows.
Call Γ(∗, ∗, ∗) the set of all non-negative p × q matrices having
positive sum on each row or column.
For X ∈ Γ(∗, ∗, ∗), i ∈ [[1, p]] and j ∈ [[1, q]], set

Ri (X ) := a−1
i X (i ,+), Cj(X ) := b−1

j X (+, j).

Define TR : Γ(∗, ∗, ∗)→ Γ(a, ∗, ∗), TC : Γ(∗, ∗, ∗)→ Γ(∗, b, ∗) by

TR(X )(i , j) := Ri (X )−1X (i , j), TC (X ) := Cj(X )−1X (i , j).

Set X2n+1 = TR(X2n), X2n+2 = TC (X2n+1) for every n ≥ 0.
Does the sequence (Xn)n≥0 thus defined converge?
If yes, the limit X∞ belongs to Γ(a, b,X0).

8/15 Christophe Leuridan
Iterated Proportional Fitting Procedure and infinite products of stochastic matrices



Biproportional fitting
Iterated Proportional Fitting Procedure

Sketch of proof

Theorem (Bacharach, Bregman, Sinkhorn, Csiszar, Pretzel...)

(Nice case: fast convergence) Assume that Γ(a, b,X0) contains
some matrix with same support as X0. Then

1 The sequences (Ri (X2n)n≥0) and (Cj(X2n+1)n≥0) converge to
1 at an at least geometric rate.

2 The sequence (Xn)n≥0 converges to some matrix X∞ which
has the same support as X0. The rate of convergence is at
least geometric.

3 The limit X∞ is the only matrix in Γ(a, b,X0) which is
diagonally equivalent to X0, or equivalently, which minimizes
of D(Y ||X0) over all Y ∈ Γ(a, b,X0).
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Theorem (Bacharach, Bregman, Sinkhorn, Csiszar, Pretzel...)

Assume that Γ(a, b,X0) is not empty. Then

1 The sequences (Ri (X2n))n≥0 and ((Cj(X2n+1))n≥0 are
1 + o(n−1/2).

2 The sequence (Xn)n≥0 converges to some matrix X∞ whose
support contains the support of every matrix in Γ(a, b,X0).

3 The limit X∞ is the unique matrix achieving the minimum of
D(Y ||X0) over all Y ∈ Γ(a, b,X0).

Remark: if Γ(a, b,X0) contains only matrices with support strictly
included in Supp(X0), the additional zeroes in X∞ are given by the
causes of criticality. One gets the same limit with a faster
convergence by replacing the corresponding entries in X0 with 0.
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Theorem (Gietl and Reffel, Aas, L.)

There exist r ∈ [[1,min(p, q)]] (r ≥ 2 iff Γ(a, b,X0) is empty) and
partitions {I1, . . . , Ir} of [[1, p]] and {J1, . . . , Jr} of [[1, q]] such that:

1 The ratios λk := b(Jk)/a(Ik) increase with k ∈ [[1, r ]];

2 (Ri (X2n))n≥0 converges to λk whenever i ∈ Ik ;

3 (Cj(X2n+1))n≥0 converges to λ−1
k whenever j ∈ Jk ;

4 When k < k ′, Xn(i , j) = 0 for every n ≥ 0, i ∈ Ik and j ∈ Jk ′ ;

5 When k < k ′, Xn(i , j)→ 0 for every n ≥ 0, i ∈ Ik and j ∈ Jk ′ ;

6 (X2n)n≥0 converges to arg minY∈Γ(a′,b,X0) D(Y ||X0), where
a′i = λkai whenever i ∈ Ik ;

7 (X2n+1)n≥0 converges to arg minY∈Γ(a,b′,X0) D(Y ||X0), where

b′j = λ−1
k bj whenever j ∈ Jk ;
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The partitions {I1, . . . , Ir} and {J1, . . . , Jr} are algorithmically
determined by the causes of incompatibility and depend only on
a, b and Supp(X0).
Replacing a by a′ or b by b′ transforms causes of incompatibility
into causes of criticality.
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Let X ∈ Γ(∗, b, ∗). Then for every j ∈ [[1, q]],

Cj(TR(X )) =
1

bj

p∑
i=1

Ri (X )−1X (i , j) =

p∑
i=1

X (i , j)

bj
Ri (X )−1.

In the same way, each Ri (TC (TR(X ))) is a weighted mean of the
quantities Cj(TR(X ))−1, therefore a weighted hybrid mean of the
quantities Rk(X )... In particular,

[R(X ),R(X )] ⊃ [C (TR(X ))−1,C (TR(X ))−1]

⊃ [R((TC (TR(X ))),R((TC (TR(X )))].

This can be applied to X2,X4,X6, . . ..
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Lemma

Let X ∈ Γ(∗, b, ∗). Call R(X ) the column vector with entries
R(X1), . . . ,R(Xp). Then R(TC (TR(X ))) = P(X )R(X ), where
P(X ) is the p × p stochastic matrix given by

∀i , k ∈ [[1, p]], P(X )(i , k) =

q∑
j=1

TR(X )(i , j)TR(X )(k , j)

aibjCj(TR(X ))
.

Moreover,

∀i ∈ [[1, p]], P(X )(i , i) ≥ a

b C (TR(X ))q

and

∀i , k ∈ [[1, p]], P(X )(k , i) ≤ a

a
P(X )(i , k).
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Thus, the convergence of R(X2n) = P(X2n−2) · · ·P(X2)R(X2)
follows from the next theorem, which improves on Lorenz’
stabilization theorem.

Theorem (L.)

Let (Mn)n≥1 be some sequence of d × d stochastic matrices.
Assume that there exists some constants γ > 0, and ρ ≥ 1 such
that for every n ≥ 1 and i , j in [[1, d ]], Mn(i , i) ≥ γ and
Mn(i , j) ≤ ρMn(j , i).
Then the sequence (Mn · · ·M1)n≥1 has a finite variation, so it
converges to some stochastic matrix L. Moreover, the series∑

n Mn(i , j) and
∑

n Mn(j , i) converge whenever the rows of L with
indexes i and j are different.
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