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Last-passage percolation on complete graphs

Set of vertices: Vn = {1, . . . , n}
Set of directed edges: En = { (i , j) | 1 ≤ i < j ≤ n }
ν is a probability distribution on {−∞} ∪ R
Random weight Xi ,j on each edge (i , j) ∈ En , where (Xi ,j)i<j are
i.i.d. with distribution ν
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Last-passage percolation on complete graphs
We consider directed paths in the graph.

The weight of a path is the sum of the weights of its edges.

Wn the maximal weight of paths starting from 1 and ending at n.

Property

There exists a deterministic constant C (ν) ∈ [0,+∞] called time
constant such that

Wn

n
a.s, L1−−−−→
n→∞

C (ν).
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A particular case: the longest path in Barak-Erdős graphs

Remark

In terms of a heaviest path, having Xi ,j = −∞ is equivalent to removing
the edge (i , j) from the graph.

Heaviest path
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A motivating example for Barak-Erdős graphs

Processing time for parallel computing with precedence constraints

n tasks to process, infinite number of processors

processing time 1 for each task

Precedence constraints that must be satisfied during processing
given by a task graph: task i must be processed before task j ⇐⇒
(i , j) is in the task graph.
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A motivating example for Barak-Erdős graphs

Example of task graph with n = 5 vertices:

1 2 3 4 5

t = 0

l : pending task f : processed task

t = 1

1

t = 2

2

t = 3

3 4

t = 4

5

Processing time = number of vertices in a path of maximal length

What if we consider a random task graph?
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Previous results on Barak-Erdős graphs

Let νp be the distribution of a random variable equal to:

1 with probability p,

−∞ with probability 1− p.

For i.i.d. weights (Xi ,j)i<j with distribution νp,

Wn

n
a.s, L1−−−−→
n→∞

C (νp).

Theorem (Mallein, Ramassamy; 19’, 21’)

p 7→ C (νp) is analytic on (0, 1].

The Taylor expansion of C (νp) at p = 1 has integer coefficients.

C (νp) = ep + π2ep
2log(p)2

(1 + o(1)) as p → 0.

8 / 22



Main results

Fix k real numbers −∞ ≤ ak < · · · < a1

For any positive real numbers (p1, . . . , pk) such that
p1 + · · ·+ pk = 1, consider the probability distribution

ν(p1,...,pk ) :=
k∑

i=1

piδai .

Theorem (T. 23’)

The map (p1, . . . , pk) 7→ C (νp1,...,pk ) is analytic on the set
{ (p1, . . . , pk) ∈ [0, 1]k | p1 + · · ·+ pk = 1, p1 > 0 }.

9 / 22



Main results

For ν a probability distribution with upper-bounded support, set
Mν := inf{ t ∈ R | ν([t,+∞]) = 0 } the essential supremum of ν.

For two probability distributions ν and ν ′, set

d(ν, ν ′) = max(dLP(ν, ν
′), |Mν −Mν′ |),

where dLP is the Lévy-Prokhorov metric.

Theorem (T. 23’)

ν 7→ C (ν) is continuous for the metric d on the set of probability
measures ν with upper-bounded support.
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Main results

Let νp,m be the distribution of a random variable equal to:

1 with probability p,

m with probability 1− p.

Theorem (T. 23’)

For any real number m > 0, p 7→ C (νp,m) is a rational function on [0, 1].
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Main results

Consider ν1 and ν2 two probability distributions.

ν1 is stochastically dominated by ν2 when for all t ∈ R,

ν1((t,+∞)) ≤ ν2((t,+∞)).

Theorem (T. 23’)

ν 7→ C (ν) is strictly increasing for the stochastic order on the set of
distributions with positive finite essential supremum.
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Elements of proof

Let µ be a probability measure on [−∞, 1).

Let νp,µ = pδ1 + (1− p)µ be the distribution of a random variable equal
to:

1 with probability p,

a random variable with distribution µ with probability 1− p.

Theorem (T. 23’)

p 7→ C (νp,µ) is analytic on (0, 1].
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Elements of proof: coupling with a particle system

Coupling last-passage percolation with a particle system called the
max-growth system (Foss, Konstantopoulos, Mallein, Ramassamy,
23’)

We construct the graph iteratively adding one vertex at the time:

Maximal weight of a path starting at 1 and ending at n
=

Position of the new particle at time n
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Elements of proof: coupling with a particle system
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Elements of proof: dynamics of the Max Growth System

A particle configuration: λ =
∑N

i=1 δλi
where λN ≤ · · · ≤ λ1

A sequence of weights X = (X1,X2, . . . ,XN) ∈ ({−∞} ∪ R)N

Illustration of the dynamics with N = 5 and X = (0.5, 1.5,−0.5,−∞,−1).

λ5 = 0 λ4 = λ3 λ2 λ1 m(λ, x) = 3

. . .

0 1 2 3

Position of the new particle: m(λ,X ) := max1≤i≤N(λi + Xi ).
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Dynamics of the Max Growth System

Consider (X
(n)
i )i ,n∈N∗ i.i.d. random variables with distribution ν.

We start at time zero with a single particle at time zero: λ(0) = δ0.

For all n ∈ N∗, we obtain the configuration at time n from the
configuration at time n − 1 by using the sequence of i.i.d. weights

X (n) = (X
(n)
i )1≤i≤n

17 / 22



Elements of proof: renovation events

Assume that the support of ν is upper-bounded by 1.

Notice that if X
(n)
i = 1, the position of the n-th particle does not

depend on (X
(n)
j )j>i .

X (1) = (1)
X (2) = (−1, 1)
X (3) = (−5, 0.5, 1)
X (4) = (−0.5, 1, . . . )

X (5) = (1, . . . )
X (6) = (0.7, 1, . . . )
X (7) = (0.6, 1, . . . )
X (8) = (−3,−1,−0.5, 1, . . . )

0 1 2 3 4
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Elements of proof: renovation events

A renovation time is a time n at which the positions of all the future
new particles in the system do not depend on the positions of the old
particles.

Sufficient condition for n to be a renovation time: there is at least a 1
in the first k + 1 weights of the sequence at each time n + k for all
k ≥ 0
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Elements of proof: renovation events

Set T = {T1 < T2 < . . . } ⊆ N∗ the set of all renovation times.

By ergodicity:

lim
N−→∞

Wn

N
= C (ν) =

E[WT1,T2 ]

E[T2 − T1]

To prove the analyticity result, it suffices to prove that E[rT2−T1 ] is
finite for some r > 1.
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Open questions

Barak-Erdős case: For ν = pδ1 + (1− p)δ−∞, the Taylor expansion
of C (ν) in q = 1− p at q = 0 is
(On-line Encyclopedia of Integer Sequences: A321309)

1− q + q2 − 3q3 − 7q4 + 15q5 − 29q6 + 54q7 − 102q8 . . .

Is there a combinatorial interpretation of those coefficients ?

Same question for ν = pδ1 + (1− p)δ−k with k ∈ N∗ ? Can we get
its asymptotics at p = 0 ?
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Thank you!
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