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Overview

0 The last-passage percolation model on complete graphs
© A motivating example: parallel computing with precedence constraints
© Main results

@ Some elements of proof
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Last-passage percolation on complete graphs

o Set of vertices: V,, = {1,...,n}

o Set of directed edges: E, = {(i,j)|1<i<j<n}
e v is a probability distribution on {—oco} UR

e Random weight X;; on each edge (i,j) € E, , where (X; )i are
i.i.d. with distribution v
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Last-passage percolation on complete graphs

@ We consider directed paths in the graph.

@ The weight of a path is the sum of the weights of its edges.

e IV, the maximal weight of paths starting from 1 and ending at n.
Property
There exists a deterministic constant C(v) € [0, +o0] called time

constant such that
Wn a.s, Lt
e

n n—o0

C(v).
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A particular case: the longest path in Barak-Erd6s graphs

Remark

In terms of a heaviest path, having X;; = —oo is equivalent to removing
the edge (i,j) from the graph.

Heaviest path

Longest path
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A motivating example for Barak-Erdos graphs

Processing time for parallel computing with precedence constraints

@ n tasks to process, infinite number of processors
@ processing time 1 for each task

@ Precedence constraints that must be satisfied during processing
given by a task graph: task i must be processed before task j «<—
(7,j) is in the task graph.
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A motivating example for Barak-Erdos graphs

Example of task graph with n =5 vertices:

Processing time = number of vertices in a path of maximal length

What if we consider a random task graph?



A motivating example for Barak-Erdos graphs

Example of task graph with n =5 vertices:

0 : pending task Q : processed task

Processing time = number of vertices in a path of maximal length

What if we consider a random task graph?



A motivating example for Barak-Erdos graphs

Example of task graph with n =5 vertices:

0 : pending task Q : processed task

Processing time = number of vertices in a path of maximal length

What if we consider a random task graph?



A motivating example for Barak-Erdos graphs

Example of task graph with n =5 vertices:

0 : pending task Q : processed task

Processing time = number of vertices in a path of maximal length

What if we consider a random task graph?



A motivating example for Barak-Erdos graphs

Example of task graph with n =5 vertices:

0 : pending task Q : processed task

Processing time = number of vertices in a path of maximal length

What if we consider a random task graph?



A motivating example for Barak-Erdos graphs

Example of task graph with n =5 vertices:

0 : pending task Q : processed task

Processing time = number of vertices in a path of maximal length

What if we consider a random task graph?

7/22



Previous results on Barak-Erdés graphs

Let v, be the distribution of a random variable equal to:
@ 1 with probability p,
@ —oo with probability 1 — p

For i.i.d. weights (X;;)i<; with distribution v,

W, 1
a.s, L C(Vp).

n n—oo

Theorem (Mallein, Ramassamy; 19", 21")
e p+— C(vp) is analytic on (0,1].
@ The Taylor expansion of C(v) at p =1 has integer coefficients.

o C(vp)=ep+ 2,;‘6’;)2(1 +0(1)) as p — 0.
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Main results

@ Fix k real numbers —o < a, < -+ < a1
e For any positive real numbers (p1,. .., px) such that
p1 + -+ 4+ px = 1, consider the probability distribution

k

Y(p1,oopk) "= Z Pi0a;-
i=1

Theorem (T. 23")

The map (p1,...,pk) = C(vp,,. p.) is analytic on the set
{(pla""pk) S [071]k ‘ prt--+pk=1p >0}
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Main results

@ For v a probability distribution with upper-bounded support, set
M, :=inf{t € R| v([t,+00]) =0} the essential supremum of v.

@ For two probability distributions v and v/, set
d(v,v') = max(dip(v, V), M, — M,]),
where d;p is the Lévy-Prokhorov metric.

Theorem (T. 23")

v +— C(v) is continuous for the metric d on the set of probability
measures v with upper-bounded support.
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Main results

Let vp,m be the distribution of a random variable equal to:
o 1 with probability p,
@ m with probability 1 — p.

Theorem (T. 23")

For any real number m > 0, p — C(vp,m) is a rational function on [0, 1].
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Main results

o Consider v1 and v, two probability distributions.
@ 11 is stochastically dominated by 15 when for all t € R,

Vl((t, +OO)) < 1/2((1', +OO))

Theorem (T. 23")

v — C(v) is strictly increasing for the stochastic order on the set of
distributions with positive finite essential supremum.
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Elements of proof

Let 1 be a probability measure on [—o00,1).

Let vp,, = pd1 + (1 — p)p be the distribution of a random variable equal
to:
o 1 with probability p,

@ a random variable with distribution p with probability 1 — p.

Theorem (T. 23")
p — C(vp,) is analytic on (0, 1]. J
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Elements of proof: coupling with a particle system

@ Coupling last-passage percolation with a particle system called the
max-growth system (Foss, Konstantopoulos, Mallein, Ramassamy,
23")

@ We construct the graph iteratively adding one vertex at the time:

Maximal weight of a path starting at 1 and ending at n

Position of the new particle at time n
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Elements of proof: coupling with a particle system
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Elements of proof: dynamics of the Max Growth System

@ A particle configuration: A = Z,N:1 0y, where Ay <--- <)\
L Xn) € ({—oo} UR)N

@ A sequence of weights X = (Xi, Xz, ..
lllustration of the dynamics with N =5 and X = (0.5, 1.5, , —00, —1).
A5 =0 M=X3 Mo A =3
0 1 2 3

Position of the new particle: m(\, X) := max;<j<ny(Ai + Xi).
16/22



Dynamics of the Max Growth System

o Consider (Xi(")),-7,,€N* i.i.d. random variables with distribution v.
o We start at time zero with a single particle at time zero: A(9) = §,

@ For all n € N*, we obtain the configuration at time n from the
configuration at time n — 1 by using the sequence of i.i.d. weights
X = (XM )1<i<n
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Elements of proof: renovation events

@ Assume that the support of v is upper-bounded by 1.
@ Notice that if X,.(") =1, the position of the n-th particle does not
depend on (Xj("))j>,-.

XM = (1) X0®) =(1,...)

X® = (-1,1) X =(0.7,1,...)

XB) = (-5,0.5,1) X7 =(06,1,...)

X® =(-05,1,...) X® =(-3,-1,-05,1,...)
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Elements of proof: renovation events

@ Assume that the support of v is upper-bounded by 1.
@ Notice that if X,.(") =1, the position of the n-th particle does not
depend on (Xj("))j>,-.

XM = (1) X0®) =(1,...)

X@ = (=1,1) X®) =(0.7,1,...)

X®) = (-5,0.5,1) X =(0.6,1,...)

X(4) = (—0 5,1,) X(8) - (_37_17_0'5717 )
0 i ) 3 i
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Elements of proof: renovation events

@ A renovation time is a time n at which the positions of all the future
new particles in the system do not depend on the positions of the old
particles.

@ Sufficient condition for n to be a renovation time: there is at least a 1
in the first kK 4+ 1 weights of the sequence at each time n + k for all

k>0
XM = (1) X0 =(1,...)
X@ = (=1,1) X0 =(0.7,1,...)
X®) = (-5,0.5,1) X =(06,1,...)
X@® = (-05,1,...) X®) = (-3,-1,-05,1,...)
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Elements of proof: renovation events

@ Set T ={T1 < T <...} CN* the set of all renovation times.
@ By ergodicity:

. W, E[WT,, 1.]
| = C(v) = i uT2l
RNy v GO R 7 o o1

o To prove the analyticity result, it suffices to prove that E[r>~ 1] is
finite for some r > 1.
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Open questions

o Barak-Erdés case: For v = pd; + (1 — p)d_oo, the Taylor expansion
of C(v)ing=1—patg=0is
(On-line Encyclopedia of Integer Sequences: A321309)

1—qg+q®—3¢3—7q* +15¢° — 29¢° + 54q7 — 102¢®.. ..

Is there a combinatorial interpretation of those coefficients ?

@ Same question for v = pd1 + (1 — p)d_k with k € N* ? Can we get
its asymptotics at p =07

21/22



Thank you!
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