Regularity of the last-passage percolation time constant on complete directed acyclic graphs

Benjamin Terlat
Université Paris-Saclay
(Laboratoire de Mathématiques d'Orsay, Institut de Physique Théorique)
Journées de Probabilités 2023 - Angers

June 20, 2023

Overview

(1) The last-passage percolation model on complete graphs
(2) A motivating example: parallel computing with precedence constraints
(3) Main results
(4) Some elements of proof

Last-passage percolation on complete graphs

- Set of vertices: $V_{n}=\{1, \ldots, n\}$
- Set of directed edges: $E_{n}=\{(i, j) \mid 1 \leq i<j \leq n\}$
- ν is a probability distribution on $\{-\infty\} \cup \mathbb{R}$
- Random weight $X_{i, j}$ on each edge $(i, j) \in E_{n}$, where $\left(X_{i, j}\right)_{i<j}$ are i.i.d. with distribution ν

Last-passage percolation on complete graphs

- We consider directed paths in the graph.
- The weight of a path is the sum of the weights of its edges.
- W_{n} the maximal weight of paths starting from 1 and ending at n.

Property

There exists a deterministic constant $C(\nu) \in[0,+\infty]$ called time constant such that

$$
\frac{W_{n}}{n} \xrightarrow[n \rightarrow \infty]{\text { a.s, } L^{1}} C(\nu)
$$

A particular case: the longest path in Barak-Erdős graphs

Remark

In terms of a heaviest path, having $X_{i, j}=-\infty$ is equivalent to removing the edge (i, j) from the graph.

Heaviest path

Longest path

A motivating example for Barak-Erdős graphs

Processing time for parallel computing with precedence constraints

- n tasks to process, infinite number of processors
- processing time 1 for each task
- Precedence constraints that must be satisfied during processing given by a task graph: task i must be processed before task $\mathrm{j} \Longleftrightarrow$ (i, j) is in the task graph.

A motivating example for Barak-Erdős graphs

Example of task graph with $n=5$ vertices:

Processing time $=$ number of vertices in a path of maximal length

What if we consider a random task graph?

A motivating example for Barak-Erdős graphs

Example of task graph with $n=5$ vertices:

Processing time $=$ number of vertices in a path of maximal length

What if we consider a random task graph?

A motivating example for Barak-Erdős graphs

Example of task graph with $n=5$ vertices:

Processing time $=$ number of vertices in a path of maximal length

What if we consider a random task graph?

A motivating example for Barak-Erdős graphs

Example of task graph with $n=5$ vertices:

Processing time $=$ number of vertices in a path of maximal length

What if we consider a random task graph?

A motivating example for Barak-Erdős graphs

Example of task graph with $n=5$ vertices:

Processing time $=$ number of vertices in a path of maximal length

What if we consider a random task graph?

A motivating example for Barak-Erdős graphs

Example of task graph with $n=5$ vertices:

Processing time $=$ number of vertices in a path of maximal length

What if we consider a random task graph?

Previous results on Barak-Erdős graphs

Let ν_{p} be the distribution of a random variable equal to:

- 1 with probability p,
- $-\infty$ with probability $1-p$.

For i.i.d. weights $\left(X_{i, j}\right)_{i<j}$ with distribution ν_{p},

$$
\frac{W_{n}}{n} \xrightarrow[n \rightarrow \infty]{\text { a.s, } \mathrm{L}^{1}} C\left(\nu_{p}\right) \text {. }
$$

Theorem (Mallein, Ramassamy; 19', 21')

- $p \mapsto C\left(\nu_{p}\right)$ is analytic on $(0,1]$.
- The Taylor expansion of $C\left(\nu_{p}\right)$ at $p=1$ has integer coefficients.
- $C\left(\nu_{p}\right)=e p+\frac{\pi^{2} e p}{2 \log (p)^{2}}(1+o(1))$ as $p \rightarrow 0$.

Main results

- Fix k real numbers $-\infty \leq a_{k}<\cdots<a_{1}$
- For any positive real numbers $\left(p_{1}, \ldots, p_{k}\right)$ such that $p_{1}+\cdots+p_{k}=1$, consider the probability distribution

$$
\nu_{\left(p_{1}, \ldots, p_{k}\right)}:=\sum_{i=1}^{k} p_{i} \delta_{a_{i}}
$$

Theorem (T. 23')
The $\operatorname{map}\left(p_{1}, \ldots, p_{k}\right) \mapsto C\left(\nu_{p_{1}, \ldots, p_{k}}\right)$ is analytic on the set $\left\{\left(p_{1}, \ldots, p_{k}\right) \in[0,1]^{k} \mid p_{1}+\cdots+p_{k}=1, p_{1}>0\right\}$.

Main results

- For ν a probability distribution with upper-bounded support, set $M_{\nu}:=\inf \{t \in \mathbb{R} \mid \nu([t,+\infty])=0\}$ the essential supremum of ν.
- For two probability distributions ν and ν^{\prime}, set

$$
d\left(\nu, \nu^{\prime}\right)=\max \left(d_{L P}\left(\nu, \nu^{\prime}\right),\left|M_{\nu}-M_{\nu^{\prime}}\right|\right),
$$

where $d_{L P}$ is the Lévy-Prokhorov metric.

Theorem (T. 23')

$\nu \mapsto C(\nu)$ is continuous for the metric d on the set of probability measures ν with upper-bounded support.

Main results

Let $\nu_{p, m}$ be the distribution of a random variable equal to:

- 1 with probability p,
- m with probability $1-p$.

Theorem (T. 23')
For any real number $m>0, p \mapsto C\left(\nu_{p, m}\right)$ is a rational function on $[0,1]$.

Main results

- Consider ν_{1} and ν_{2} two probability distributions.
- ν_{1} is stochastically dominated by ν_{2} when for all $t \in \mathbb{R}$,

$$
\nu_{1}((t,+\infty)) \leq \nu_{2}((t,+\infty))
$$

Theorem (T. 23')
$\nu \mapsto C(\nu)$ is strictly increasing for the stochastic order on the set of distributions with positive finite essential supremum.

Elements of proof

Let μ be a probability measure on $[-\infty, 1)$.
Let $\nu_{p, \mu}=p \delta_{1}+(1-p) \mu$ be the distribution of a random variable equal to:

- 1 with probability p,
- a random variable with distribution μ with probability $1-p$.

Theorem (T. 23')
$p \mapsto C\left(\nu_{p, \mu}\right)$ is analytic on $(0,1]$.

Elements of proof: coupling with a particle system

- Coupling last-passage percolation with a particle system called the max-growth system (Foss, Konstantopoulos, Mallein, Ramassamy, 23')
- We construct the graph iteratively adding one vertex at the time:

Maximal weight of a path starting at 1 and ending at n
Position of the new particle at time n

Elements of proof: coupling with a particle system

Maximal weight of a path starting at 1 and ending at n
三

Position of the new particle at time n

Elements of proof: coupling with a particle system

Maximal weight of a path starting at 1 and ending at n
三

Position of the new particle at time n

Elements of proof: coupling with a particle system

Maximal weight of a path starting at 1 and ending at n

$$
=
$$

Position of the new particle at time n

Elements of proof: coupling with a particle system

Maximal weight of a path starting at 1 and ending at n

$$
=
$$

Position of the new particle at time n

Elements of proof: coupling with a particle system

Maximal weight of a path starting at 1 and ending at n

$$
=
$$

Position of the new particle at time n

Elements of proof: dynamics of the Max Growth System

- A particle configuration: $\lambda=\sum_{i=1}^{N} \delta_{\lambda_{i}}$ where $\lambda_{N} \leq \cdots \leq \lambda_{1}$
- A sequence of weights $X=\left(X_{1}, X_{2}, \ldots, X_{N}\right) \in(\{-\infty\} \cup \mathbb{R})^{N}$ Illustration of the dynamics with $N=5$ and $X=(0.5,1.5,-0.5,-\infty,-1)$.

Position of the new particle: $\mathfrak{m}(\lambda, X):=\max _{1 \leq i \leq N}\left(\lambda_{i}+X_{i}\right)$.

Dynamics of the Max Growth System

- Consider $\left(X_{i}^{(n)}\right)_{i, n \in \mathbb{N}^{*}}$ i.i.d. random variables with distribution ν.
- We start at time zero with a single particle at time zero: $\lambda^{(0)}=\delta_{0}$.
- For all $n \in \mathbb{N}^{*}$, we obtain the configuration at time n from the configuration at time $n-1$ by using the sequence of i.i.d. weights $X^{(n)}=\left(X_{i}^{(n)}\right)_{1 \leq i \leq n}$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
X^{(5)}=(1, \ldots)
$$

$$
X^{(6)}=(0.7,1, \ldots)
$$

$$
X^{(7)}=(0.6,1, \ldots)
$$

$$
X^{(8)}=(-3,-1,-0.5,1, \ldots)
$$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
X^{(5)}=(1, \ldots)
$$

$$
X^{(6)}=(0.7,1, \ldots)
$$

$$
X^{(7)}=(0.6,1, \ldots)
$$

$$
X^{(8)}=(-3,-1,-0.5,1, \ldots)
$$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
\begin{aligned}
& X^{(5)}=(1, \ldots) \\
& X^{(6)}=(0.7,1, \ldots) \\
& X^{(7)}=(0.6,1, \ldots) \\
& X^{(8)}=(-3,-1,-0.5,1, \ldots)
\end{aligned}
$$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
\begin{aligned}
& X^{(5)}=(1, \ldots) \\
& X^{(6)}=(0.7,1, \ldots) \\
& X^{(7)}=(0.6,1, \ldots) \\
& X^{(8)}=(-3,-1,-0.5,1, \ldots)
\end{aligned}
$$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
\begin{aligned}
& X^{(5)}=(1, \ldots) \\
& X^{(6)}=(0.7,1, \ldots) \\
& X^{(7)}=(0.6,1, \ldots) \\
& X^{(8)}=(-3,-1,-0.5,1, \ldots)
\end{aligned}
$$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
\begin{aligned}
& X^{(5)}=(1, \ldots) \\
& X^{(6)}=(0.7,1, \ldots) \\
& X^{(7)}=(0.6,1, \ldots) \\
& X^{(8)}=(-3,-1,-0.5,1, \ldots)
\end{aligned}
$$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
\begin{aligned}
& X^{(5)}=(1, \ldots) \\
& X^{(6)}=(0.7,1, \ldots) \\
& X^{(7)}=(0.6,1, \ldots) \\
& X^{(8)}=(-3,-1,-0.5,1, \ldots)
\end{aligned}
$$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
\begin{aligned}
& X^{(5)}=(1, \ldots) \\
& X^{(6)}=(0.7,1, \ldots) \\
& X^{(7)}=(0.6,1, \ldots) \\
& X^{(8)}=(-3,-1,-0.5,1, \ldots)
\end{aligned}
$$

Elements of proof: renovation events

- Assume that the support of ν is upper-bounded by 1 .
- Notice that if $X_{i}^{(n)}=1$, the position of the n-th particle does not depend on $\left(X_{j}^{(n)}\right)_{j>i}$.

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
\begin{aligned}
& X^{(5)}=(1, \ldots) \\
& X^{(6)}=(0.7,1, \ldots) \\
& X^{(7)}=(0.6,1, \ldots) \\
& X^{(8)}=(-3,-1,-0.5,1, \ldots)
\end{aligned}
$$

Elements of proof: renovation events

- A renovation time is a time n at which the positions of all the future new particles in the system do not depend on the positions of the old particles.
- Sufficient condition for n to be a renovation time: there is at least a 1 in the first $k+1$ weights of the sequence at each time $n+k$ for all $k \geq 0$

$$
\begin{aligned}
& X^{(1)}=(1) \\
& X^{(2)}=(-1,1) \\
& X^{(3)}=(-5,0.5,1) \\
& X^{(4)}=(-0.5,1, \ldots)
\end{aligned}
$$

$$
\begin{aligned}
& X^{(5)}=(1, \ldots) \\
& X^{(6)}=(0.7,1, \ldots) \\
& X^{(7)}=(0.6,1, \ldots) \\
& X^{(8)}=(-3,-1,-0.5,1, \ldots)
\end{aligned}
$$

Elements of proof: renovation events

- Set $\mathcal{T}=\left\{T_{1}<T_{2}<\ldots\right\} \subseteq \mathbb{N}^{*}$ the set of all renovation times.
- By ergodicity:

$$
\lim _{N \rightarrow \infty} \frac{W_{n}}{N}=C(\nu)=\frac{\mathbb{E}\left[W_{T_{1}, T_{2}}\right]}{\mathbb{E}\left[T_{2}-T_{1}\right]}
$$

- To prove the analyticity result, it suffices to prove that $\mathbb{E}\left[r^{T_{2}-T_{1}}\right]$ is finite for some $r>1$.

Open questions

- Barak-Erdős case: For $\nu=p \delta_{1}+(1-p) \delta_{-\infty}$, the Taylor expansion of $C(\nu)$ in $q=1-p$ at $q=0$ is (On-line Encyclopedia of Integer Sequences: A321309)

$$
1-q+q^{2}-3 q^{3}-7 q^{4}+15 q^{5}-29 q^{6}+54 q^{7}-102 q^{8} \ldots
$$

Is there a combinatorial interpretation of those coefficients ?

- Same question for $\nu=p \delta_{1}+(1-p) \delta_{-k}$ with $k \in \mathbb{N}^{*}$? Can we get its asymptotics at $p=0$?

Thank you!

