Regularity of the last-passage percolation time constant on complete directed acyclic graphs

Benjamin Terlat

Université Paris-Saclay (Laboratoire de Mathématiques d'Orsay, Institut de Physique Théorique)

Journées de Probabilités 2023 - Angers

June 20, 2023

Overview

1 The last-passage percolation model on complete graphs

2 A motivating example: parallel computing with precedence constraints

3 Main results

Last-passage percolation on complete graphs

- Set of vertices: $V_n = \{1, \ldots, n\}$
- Set of **directed edges**: $E_n = \{ (i, j) | 1 \le i < j \le n \}$
- ν is a probability distribution on $\{-\infty\} \cup \mathbb{R}$
- Random weight $X_{i,j}$ on each edge $(i,j) \in E_n$, where $(X_{i,j})_{i < j}$ are i.i.d. with distribution ν

Last-passage percolation on complete graphs

- We consider directed paths in the graph.
- The weight of a path is the sum of the weights of its edges.
- W_n the maximal weight of paths starting from 1 and ending at n.

Property

There exists a deterministic constant $C(\nu) \in [0, +\infty]$ called time constant such that

$$\frac{W_n}{n} \xrightarrow[n\to\infty]{a.s, L^1} C(\nu).$$

A particular case: the longest path in Barak-Erdős graphs

Remark

In terms of a heaviest path, having $X_{i,j} = -\infty$ is equivalent to removing the edge (i, j) from the graph.

Heaviest path

Longest path

Processing time for parallel computing with precedence constraints

- n tasks to process, infinite number of processors
- processing time 1 for each task
- Precedence constraints that must be satisfied during processing given by a task graph: task i must be processed before task j ⇐⇒ (i, j) is in the task graph.

Example of task graph with n = 5 vertices:

Processing time = number of vertices in a path of maximal length

Example of task graph with n = 5 vertices:

Processing time = number of vertices in a path of maximal length

Example of task graph with n = 5 vertices:

Processing time = number of vertices in a path of maximal length

Example of task graph with n = 5 vertices:

Processing time = number of vertices in a path of maximal length

Example of task graph with n = 5 vertices:

Processing time = number of vertices in a path of maximal length

Example of task graph with n = 5 vertices:

Processing time = number of vertices in a path of maximal length

Previous results on Barak-Erdős graphs

Let ν_p be the distribution of a random variable equal to:

- 1 with probability p,
- $-\infty$ with probability 1 p.

For i.i.d. weights $(X_{i,j})_{i < j}$ with distribution ν_p ,

$$\frac{W_n}{n} \xrightarrow[n \to \infty]{a.s, L^1} C(\nu_p).$$

Theorem (Mallein, Ramassamy; 19', 21')

• $p \mapsto C(\nu_p)$ is analytic on (0,1].

• The Taylor expansion of $C(\nu_p)$ at p = 1 has integer coefficients.

•
$$C(\nu_p) = ep + \frac{\pi^2 ep}{2log(p)^2}(1 + o(1))$$
 as $p \to 0$.

- Fix k real numbers $-\infty \leq a_k < \cdots < a_1$
- For any positive real numbers (p_1, \ldots, p_k) such that $p_1 + \cdots + p_k = 1$, consider the probability distribution

$$\nu_{(p_1,\ldots,p_k)} := \sum_{i=1}^k p_i \delta_{a_i}.$$

Theorem (T. 23')

The map $(p_1, ..., p_k) \mapsto C(\nu_{p_1,...,p_k})$ is analytic on the set $\{ (p_1, ..., p_k) \in [0, 1]^k \mid p_1 + \cdots + p_k = 1, p_1 > 0 \}.$

- For ν a probability distribution with upper-bounded support, set $M_{\nu} := \inf\{t \in \mathbb{R} \mid \nu([t, +\infty]) = 0\}$ the **essential supremum** of ν .
- For two probability distributions u and u', set

$$d(
u,
u')=\max(d_{LP}(
u,
u'),|M_
u-M_{
u'}|),$$

where d_{LP} is the Lévy-Prokhorov metric.

Theorem (T. 23')

 $\nu \mapsto C(\nu)$ is **continuous** for the metric *d* on the set of probability measures ν with upper-bounded support.

Let $\nu_{p,m}$ be the distribution of a random variable equal to:

- 1 with probability p,
- *m* with probability 1 p.

Theorem (T. 23')

For any real number m > 0, $p \mapsto C(\nu_{p,m})$ is a rational function on [0,1].

- Consider ν_1 and ν_2 two probability distributions.
- ν_1 is stochastically dominated by ν_2 when for all $t \in \mathbb{R}$,

$$\nu_1((t,+\infty)) \leq \nu_2((t,+\infty)).$$

Theorem (T. 23')

 $\nu \mapsto C(\nu)$ is strictly increasing for the stochastic order on the set of distributions with positive finite essential supremum.

Elements of proof

Let μ be a probability measure on $[-\infty, 1)$.

Let $\nu_{p,\mu} = p\delta_1 + (1-p)\mu$ be the distribution of a random variable equal to:

- 1 with probability p,
- a random variable with distribution μ with probability 1 p.

Theorem (T. 23') $p \mapsto C(\nu_{p,\mu})$ is analytic on (0, 1].

- Coupling last-passage percolation with a particle system called the max-growth system (Foss, Konstantopoulos, Mallein, Ramassamy, 23')
- We construct the graph iteratively adding one vertex at the time:

Maximal weight of a path starting at 1 and ending at n

Position of the new particle at time *n*

Position of the new particle at time *n*

Maximal weight of a path starting at 1 and ending at *n* = Position of the new particle at time *n*

Maximal weight of a path starting at 1 and ending at n= Position of the new particle at time n Elements of proof: dynamics of the Max Growth System

• A particle configuration: $\lambda = \sum_{i=1}^{N} \delta_{\lambda_i}$ where $\lambda_N \leq \cdots \leq \lambda_1$

• A sequence of weights $X = (X_1, X_2, \dots, X_N) \in (\{-\infty\} \cup \mathbb{R})^N$

Illustration of the dynamics with N = 5 and $X = (0.5, 1.5, -0.5, -\infty, -1)$.

Position of the new particle: $\mathfrak{m}(\lambda, X) := \max_{1 \le i \le N} (\lambda_i + X_i)$.

Dynamics of the Max Growth System

- Consider $(X_i^{(n)})_{i,n\in\mathbb{N}^*}$ i.i.d. random variables with distribution ν .
- We start at time zero with a single particle at time zero: $\lambda^{(0)} = \delta_0$.
- For all n ∈ N*, we obtain the configuration at time n from the configuration at time n − 1 by using the sequence of i.i.d. weights X⁽ⁿ⁾ = (X_i⁽ⁿ⁾)_{1≤i≤n}

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

$$\begin{array}{ll} X^{(1)} = (1) & X^{(5)} = (1, \ldots) \\ X^{(2)} = (-1, 1) & X^{(6)} = (0.7, 1, \ldots) \\ X^{(3)} = (-5, 0.5, 1) & X^{(7)} = (0.6, 1, \ldots) \\ X^{(4)} = (-0.5, 1, \ldots) & X^{(8)} = (-3, -1, -0.5, 1, \ldots) \end{array}$$

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

$$\begin{array}{ll} X^{(1)} = (1) & X^{(5)} = (1, \ldots) \\ X^{(2)} = (-1, 1) & X^{(6)} = (0.7, 1, \ldots) \\ X^{(3)} = (-5, 0.5, 1) & X^{(7)} = (0.6, 1, \ldots) \\ X^{(4)} = (-0.5, 1, \ldots) & X^{(8)} = (-3, -1, -0.5, 1, \ldots) \end{array}$$

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

$$\begin{array}{ll} X^{(1)} = (1) & X^{(5)} = (1, \ldots) \\ X^{(2)} = (-1, 1) & X^{(6)} = (0.7, 1, \ldots) \\ X^{(3)} = (-5, 0.5, 1) & X^{(7)} = (0.6, 1, \ldots) \\ X^{(4)} = (-0.5, 1, \ldots) & X^{(8)} = (-3, -1, -0.5, 1, \ldots) \end{array}$$

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

- Assume that the support of ν is upper-bounded by 1.
- Notice that if X_i⁽ⁿ⁾ = 1, the position of the *n*-th particle does not depend on (X_j⁽ⁿ⁾)_{j>i}.

- A **renovation time** is a time *n* at which the positions of all the future new particles in the system do not depend on the positions of the old particles.
- Sufficient condition for n to be a renovation time: there is at least a 1 in the first k + 1 weights of the sequence at each time n + k for all k ≥ 0

Set T = {T₁ < T₂ < ...} ⊆ N* the set of all renovation times.
By ergodicity:

$$\lim_{N\to\infty}\frac{W_n}{N}=C(\nu)=\frac{\mathbb{E}[W_{T_1,T_2}]}{\mathbb{E}[T_2-T_1]}$$

 To prove the analyticity result, it suffices to prove that E[r<sup>T₂−T₁] is finite for some r > 1.
</sup>

Open questions

Barak-Erdős case: For ν = pδ₁ + (1 − p)δ_{-∞}, the Taylor expansion of C(ν) in q = 1 − p at q = 0 is (On-line Encyclopedia of Integer Sequences: A321309)

$$1 - q + q^2 - 3q^3 - 7q^4 + 15q^5 - 29q^6 + 54q^7 - 102q^8 \dots$$

Is there a combinatorial interpretation of those coefficients ?

• Same question for $\nu = p\delta_1 + (1-p)\delta_{-k}$ with $k \in \mathbb{N}^*$? Can we get its asymptotics at p = 0?

Thank you!