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Consider the equation

| dX, = o(X,)dt +dB, |

when ¢ is a distribution in some Besov space and B is a fractional
Brownian motion.

We look for solutions of the form
Xi = Xo + K; + B,

where in case ¢ is regular enough, K; = fot o(Xy)ds.
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Introduction

Examples

» © = «ady: corresponds formally to an SDE involving the local time
of the solution.

In the Brownian case, SDEs involving the local time were studied by
[Le Gall'84] and gives the skew Brownian motion:
® when o = +1, reflected Brownian motion;
® when o € (—1,1), process which diffuses at different speed on R
and R_.
® See Harrison-Shepp, Lejay, etc. for various characterisations.
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of the solution.

In the Brownian case, SDEs involving the local time were studied by
[Le Gall'84] and gives the skew Brownian motion:
® when o = +1, reflected Brownian motion;
® when o € (—1,1), process which diffuses at different speed on R
and R_.
® See Harrison-Shepp, Lejay, etc. for various characterisations.

In the fractional case, SDEs with local time were also studied
(Bafios, Pilipenko, Proske, etc.). However the previous
interpretation (reflection, skewness) is not established.

» For ¢ bounded, the flow gives the characteristics of the rough
transport equation [Nilssen'20].

» Bessel-like processes: ¢ = a| - |7°.
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Noise is your friend

Typical example

dXt = Sign(Xt)\/ |Xt| dt 5 XO = 0,
whose solutions are given, for all t* € R, by

*

(X] Vier, ==t (t—1t%)3.
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Noise is your friend

Typical example
dXt = Sign(Xt)\/ |Xt| dt + (“/’V/], XO = 0,

whose solutions are given, for all t* € Ry, by

(X] Veer, ==t (t —1")7.

As soon as the solution leaves 0, = uniqueness of solution since /- is
Lipschitz away from 0.

Now add noise to the equation. Due to the forcing, solution leaves 0
immediately. But away from 0 Lipschitz drift = uniqueness. For almost
each trajectory of W;, we have a unique solution.

Heuristics: In situations where the ODE #; = ¢(x) lacks uniqueness,
adding noise might restore uniqueness: regularisation by noise.
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Rough noise is your (best) friend

For a Hurst parameter H € (0,1) \ {3}, fractional Brownian motion
(fBm) is given by:

BH = cH/R ((tf s)H-1/2 _ (—8)5_1/2) dw,, teR.
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» Trajectories:
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» Gaussian process with memory:
e H>21: Y E[BI(Bf\1—B{)] =+0c (example: Niles flood).
k=1

® Rough regime H < %: negatively correlated increments.

6/23



Introduction Weak existence The tamed Euler scheme Perspectives

A few results

» |n the Brownian case, works of Zvonkin, Veretennikov,
[Krylov and Réckner'05]:

Strong existence and uniq. for o(t,z) € LILP(R?)

2 d
if p>2,¢>2, —+—-<1.
q P
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Introduction

A few results

» |n the Brownian case, works of Zvonkin, Veretennikov,

[Krylov and Réckner’'05]:
Strong existence and uniq. for o(t,z) € LILP(R?)

2 d
if p>2,¢>2, —+—-<1.
q p

For ¢ = oo, strong WP for p € LP — C7, v = —g.

For ¢ € C7: strong WP for v > —%, d = 1, counter-examples for
v < —3 (see Bass-Chen); weak WP for v > —2, d = 1 (Delarue-
Diel); weak WP for v > f%, d > 1 (Flandoli-Issoglio-Russo);

Canizzaro-Chouk, Coutin-Duboscg-Réveillac, etc.

In the fBm case, early work by [Nualart and Ouknine’02]. Then
[Catellier and Gubinelli’16] considered nonlinear Young differential
equations to prove that there is a unique solution if

1
eC’andy>1—- —.
® and «y SH

Recent extensions by Butkovsky, Galeati, Gerencser, L&, Mytnik, etc.
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X, :x—l—/ o(Xs)ds + By.
0
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So what is the right scaling 77

Xt—:v+/0tcp(Xs)ds+Bt.
» We have B € C~ a.s., we also expect X € CF~ q.s.
> pcCsop(X)ec.
> = [y e(Xy)ds et

> At least, we expect 1 +vH > H, ie. v > 1— .
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So what is the right scaling 77

Xt—x+/0t<p(Xs)ds+Bt.
» We have B € C~ a.s., we also expect X € CF~ q.s.
> pcCsop(X)ec.
> = [y e(Xy)ds et
> At least, we expect 1 +vH > H, ie. v > 1— .

For counter-examples with v < 1 — % and b € L5 < C™7, see
[Butkovsky et al.’23].
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Questions and objectives

» Weak well-posedness?
» Strong existence and uniqueness in case v < 1 — ﬁ?
» Numerical approximation?

» Regularity of the law of solutions?
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Weak solutions

t
Xt:X0+/ o(X,)ds+ By, tel0,T]
0

Definition

(X, B) defined on some (Q, F,F,P) is a weak solution of (1) if
» Bis an F-fBm;
» X is adapted to F;
» 3(K¢)ie[o,r) such that, ass.,

Xt:X0+Kt+Bt, Vtg [O,T],

» Y(¢™)nen smooth bounded functions converging to ¢ in 77,

sup

t
/ ©"(X,)dr — K¢| — 0 in proba.
tel0, 7] |J0

Perspectives
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Weak existence

Theorem ([Anzeletti, R. and Tanré'21])
Let ¢ € C7,v € R. Assume that

il
T H)

Then there exists a weak solution X to (1) s.t. X — B €C

Vi € (0,1 4+ Hy A0\ {1} and m > 2.

Perspectives
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Weak existence

Theorem ([Anzeletti, R. and Tanré'21])
Let o € C7,v € R. Assume that

Ty H)

Then there exists a weak solution X to (1) s.t. X — B € Cg (L™),
Vi € (0,1 4+ Hy A0\ {1} and m > 2.

Example
If o =00 (€C') and d =1, one must choose H < .
Then X — B has Holder regularity 1 — H (> H), hence X is not

reflected.
See [Anzeletti'23] and [Butkovsky et al.’23] for extension to H < 1.
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The basic ingredient is the stochastic sewing lemma

Lemma ([L&"20])

Let m € [2,00). Let A: Ao — L™(Q) s.t. A, is Fy-measurable.
Assume 3Ty, Ty > 0, and e1,e2 > 0 s.t. V(s,t) € Aoy and u := =t

B0 As el Folllm < Ty (¢ —s)'*=,
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The basic ingredient is the stochastic sewing lemma

Lemma ([L&"20])
Letm € [2,00). Let A: Ag1 — L™(Q) s.t. Agy is Fi-measurable.
Assume 3T'1,T'y > 0, and e1,e2 > 0 s.t. V(s,t) € Aoy and u := =,
[E[0As el Felllm <Tu(t—s)'e,
16 As uillzm < Do (t —s)2Fe2,
Then 3(At)iepo,1] 5-t. Vt € [0,1] and any sequence of partitions
1T, = {t*} N of [0,t] with mesh size going to zero,

Ny,
A; = lim g A,x ,x in proba.
e thth, 1P
i=0

Moreover, 3C' s.t. ¥(s,t) € Ag 1,
| A; — Ay — Aggllpm < CTy (t—$)'H0 4 Oy (¢ — 5)2 752,
H]E[-At - .As - A37t | ]:sHle < CF1 (t - S)H_El.

12/23
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Elements of proof
The SSL leads to key estimates:

1
“r e / f(z + B,)dr is more regular than f".
0
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Xp=a+ [} o"(X!)dr+ B, = x + KJ' + By.
K — K = [1o"(B, + 2 + KI) dr.
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and 0>~ > —1/(2H). Let aw € (0,1) s.t. H(y—1)+a > 0.
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Elements of proof

» We want to construct a tight sequence
Xp=a+ [} o"(X!)dr+ B, = x + KJ' + By.
K — K = [1o"(B, + 2 + KI) dr.
> Apply SSL to A, ; = ft f(B, + 1) dr for smooth f, (¢;) F-adapted

S

and 0>~ > —1/(2H). Let aw € (0,1) s.t. H(y—1)+a > 0.

<C 4 (t — s)HHY
Ly = Il flle~ (t —s)

+Clfller[¥les,

Replace f by ¢" = existence via a tightness-stability argument.

| [ s vy

]Lm (t _ S)1+H('y—1)+a.

» For0>~>1—1/(2H), any Fs-measurable k1,2 € L™(Q),

(for uniqueness).

t
/ J(Br+ k1) = f(By + ro)dr]| < Clifllenlima = wallom (¢ = 5) 7O,
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The tamed Euler scheme

In the Brownian case, recent results of numerical approximation for
irregular drifts: e.g. [Jourdain and Menozzi'21] and [L& and Ling'21]. See
also [De Angelis et al.'19] for distributional drifts.

In the fractional case, works of Gradinaru, Neuenkirch, Nourdin, Nualart,
etc. for smooth drifts. Recently, [Butkovsky et al.’21] for drifts in C7,
v > 0.
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The tamed Euler scheme

In the Brownian case, recent results of numerical approximation for
irregular drifts: e.g. [Jourdain and Menozzi'21] and [L& and Ling'21]. See
also [De Angelis et al.'19] for distributional drifts.

In the fractional case, works of Gradinaru, Neuenkirch, Nourdin, Nualart,
etc. for smooth drifts. Recently, [Butkovsky et al.’21] for drifts in C7,
v > 0.

Let h > 0 and (¢") that approximates ¢ in C?~(R%). Consider the
following tamed Euler scheme:

it
X:In = XO + / (pn(th};n)dT’ -+ Bt,
J0

where r, = h|7].
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“Subcritical’” case

Theorem ([Goudenége, Haress and R.'22])
Let H < 5. Let p € C7 and assume
0>~v>1 1
7 2H
Let X denote a weak solution such that X — B € C[2 H]LI(
Lete € (0,3). ThenVh € (0,1) and Vn € N,

™), m > 2.

1_
X = X0y <Ol = ellers + I looht =

+ " o " oA ~<).

15 /23
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Corollary
_ 1

Letny = |h "% | and " =g . ThenVh € (0,1),
"h

[X o Xh,nh]cl < Ch2(1—’1Y+%)7€‘

2Lm
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Corollary
_ 1

Letny = |h "% | and " =g . ThenVh € (0,1),
"h

1
[X _Xh,nh]cl < Ch2(1—7+%) E‘

2Lm

Example

If o =8y (€ C~1), one must choose H < %. Same for any finite measure.

v

16 /23



Introduction Weak existence The tamed Euler scheme Perspectives

Corollary
1

Let nj, = Lh_“”*%J and " = g1 xp. ThenVh € (0,1),
"h

S T
o h,np 2(1=~v+2)
[X = Xhon] 4 < CROTHD

Example

If o =8y (€ C~1), one must choose H < %. Same for any finite measure.

v

Remark

Working in Besov spaces (instead of Holder), we can get a rate for
¢ = & even for H = 1.

16 /23



The tamed Euler scheme

Rates

The orders of convergence obtained here and in [Butkovsky et al.21] are:

Drift Rate
150 (1) n1-c
v=0 1-¢
v € (1 - 55,0) Ty — €
B'V,fy—i—f—l——and p < oo | < H (non explicit)

17 /23
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Elements of proof (subcritical case)

n n n l755 n n —e
X =Xy < O(I6" = @ller-r + 16" oo + 16" loelli™ ek ).

Denote
t t
K} = / ¢"(X,)dr and K" := / (X dr.
0 0
Decompose the error as follows:
X, — XM= K, — K" (2)

+ / (&"(K, + B,) — o"(K' + B, ))dr  (3)
0

t
+ /0 (¢"(KM" + By,) — @"(KM™ + By, ))dr.  (4)

18 /23
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Consequence - Strong existence and uniqueness

As a consequence of the convergence of the Euler scheme:

Theorem ([Anzeletti R. and Tanré'21], [Goudenége, Haress and R.'22])

Let H < & and ¢ € C7 (or B3)). Assume that

1
v>1- i (or critical condition).

» There exists a strong solution X .

» Pathwise uniqueness holds in the class of solutions such that

[X B] 1/2+HL2,OO < o0.

19/23
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Consequence - Strong existence and uniqueness

As a consequence of the convergence of the Euler scheme:

Theorem ([Anzeletti R. and Tanré'21], [Goudenége, Haress and R.'22])

Let H < & and ¢ € C7 (or B3)). Assume that

1
v>1- i (or critical condition).

» There exists a strong solution X .

» Pathwise uniqueness holds in the class of solutions such that

[X B] 1/2+HL2,OO < o0.

> Ifypisa fmlte measure, pathwise uniqueness holds.

19 /23
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Numerical examples in d=1

Consider

dX; = lyx,>0ydt +dB; (5)
and

dX; = 0o(Xy)dt + dBy. (6)

log,ferror)

— — — Standard deviation

52 51 & 49 a6 45 44 43 42 52 51 5 49 46 45 44 43 42

BRI s a7
) Tog (1)

Figure: E.M. Haress and L. Goudenége. Log of the strong error against log(h).
Left: Equation (5). Observed slope = 0.5, theoretical order = 1/2.
Right: Equation (6). Observed slope & 0.25, theoretical order = 1/4.
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Density of the solution

» Regularity of the density: Previous results by [Olivera-Tudor'19],
[Galeati et al'22].

Theorem (Anzeletti, R. and Tanré'23+)
Lety>1— . ThenVt >0, X, has a density and

1

L(X.) e L'BF " n2can—i—d—e,
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Density of the solution

» Regularity of the density: Previous results by [Olivera-Tudor'19],
[Galeati et al'22].

Theorem (Anzeletti, R. and Tanré'23+)
Lety>1— . ThenVt >0, X, has a density and

1

L(X.) e L'BF " n2can—i—d—e,

» Towards McKean-Vlasov equations: for b € C”,

t

Xt:x—i—/ bx us(Xs)ds + By
0

Ht :[«(Xt)
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Density of the solution

> Regularity of the density: Previous results by [Olivera-Tudor'19],
[Galeati et al'22].

Theorem (Anzeletti, R. and Tanré'23+)
Lety>1— . ThenVt >0, X, has a density and

1

L(X.) e L'BF " n2can—i—d—e,

» Towards McKean-Vlasov equations: for b € C”,

t
X, :x—i—/ bx us(Xs)ds + By
0
He = E(Xt)
» Gaussian upper and lower bounds for v > 2 — ﬁ See also

[Li-Panloup-Sieber'23].
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Stochastic heat equation with singular drift

dyult,z) = %8§xu(t, )+ o(ult, 2)) + Wt z) (7)
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Stochastic heat equation with singular drift

dyult,z) = %8§xu(t, )+ o(ult, 2)) + Wt z) 7)

» Bounebache and Zambotti'1l4 considered ¢ a measure. Motivations
from random interface models, see e.g. Funaki.

» [Athreya et al.’23] proved strong WP for any finite measure ¢.

» For each fixed space point, the free SHE (that is, (7) with ¢ = 0)
behaves “qualitatively” like an fBM with Hurst H = 1/4.

Theorem (Goudenége, Haress and R.'23+)

The finite-differences scheme, with Euler discretisation in time for (7)
converges to u with a rate.
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