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Consider the equation

dXt = ϕ(Xt)dt+ dBt,

when ϕ is a distribution in some Besov space and B is a fractional
Brownian motion.

We look for solutions of the form

Xt = X0 +Kt +Bt,

where in case ϕ is regular enough, Kt =
∫ t

0
ϕ(Xs)ds.

3 / 23
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Examples

I ϕ = α δ0: corresponds formally to an SDE involving the local time
of the solution.

In the Brownian case, SDEs involving the local time were studied by
[Le Gall’84] and gives the skew Brownian motion:
• when α = ±1, reflected Brownian motion;
• when α ∈ (−1, 1), process which diffuses at different speed on R+

and R−.
• See Harrison-Shepp, Lejay, etc. for various characterisations.

In the fractional case, SDEs with local time were also studied
(Baños, Pilipenko, Proske, etc.). However the previous
interpretation (reflection, skewness) is not established.

I For ϕ bounded, the flow gives the characteristics of the rough
transport equation [Nilssen’20].

I Bessel-like processes: ϕ = α | · |−s.
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Noise is your friend

Typical example

dXt = sign(Xt)
√
|Xt| dt

+ dWt

, X0 = 0,

whose solutions are given, for all t∗ ∈ R+, by

(Xt∗

t )t∈R+ := t 7→ (t− t∗)2
+.

As soon as the solution leaves 0, =⇒ uniqueness of solution since
√
· is

Lipschitz away from 0.

Now add noise to the equation. Due to the forcing, solution leaves 0
immediately. But away from 0 Lipschitz drift =⇒ uniqueness. For almost
each trajectory of Wt, we have a unique solution.

Heuristics: In situations where the ODE ẋt = ϕ(xt) lacks uniqueness,
adding noise might restore uniqueness: regularisation by noise.
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Rough noise is your (best) friend

For a Hurst parameter H ∈ (0, 1) \ { 1
2}, fractional Brownian motion

(fBm) is given by:

BHt = cH

∫
R

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dWs, t ∈ R.

I Trajectories:

I Gaussian process with memory:

• H > 1
2
:
∞∑
k=1

E
[
BH1 (BHk+1 −BHk )

]
= +∞ (example: Niles flood).

• Rough regime H < 1
2
: negatively correlated increments.
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A few results
I In the Brownian case, works of Zvonkin, Veretennikov,

[Krylov and Röckner’05]:

Strong existence and uniq. for ϕ(t, x) ∈ LqtLpx(Rd)

if p ≥ 2, q > 2,
2

q
+
d

p
< 1.

For q =∞, strong WP for ϕ ∈ Lp ↪→ Cγ , γ = −dp .

For ϕ ∈ Cγ : strong WP for γ > − 1
2 , d = 1, counter-examples for

γ < − 1
2 (see Bass-Chen); weak WP for γ > − 2

3 , d = 1 (Delarue-
Diel); weak WP for γ > − 1

2 , d ≥ 1 (Flandoli-Issoglio-Russo);
Canizzaro-Chouk, Coutin-Duboscq-Réveillac, etc.

I In the fBm case, early work by [Nualart and Ouknine’02]. Then
[Catellier and Gubinelli’16] considered nonlinear Young differential
equations to prove that there is a unique solution if

ϕ ∈ Cγ and γ > 1− 1

2H
.

Recent extensions by Butkovsky, Galeati, Gerencser, Lê, Mytnik, etc.
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So what is the right scaling γ?

Xt = x+

∫ t

0

ϕ(Xs) ds+Bt.

I We have B ∈ CH− a.s., we also expect X ∈ CH− a.s.

I ϕ ∈ Cγ so ϕ(X) ∈ CγH−.

I ⇒
∫ ·

0
ϕ(Xs) ds ∈ C1+γH−.

I At least, we expect 1 + γH > H, i.e. γ > 1− 1
H .

For counter-examples with γ < 1− 1
H and b ∈ L−

d
γ ↪→ C−γ , see

[Butkovsky et al.’23].
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Questions and objectives

I Weak well-posedness?

I Strong existence and uniqueness in case γ ≤ 1− 1
2H ?

I Numerical approximation?

I Regularity of the law of solutions?

9 / 23
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Weak solutions

Xt = X0 +

∫ t

0

ϕ(Xs) ds+Bt, t ∈ [0, T ]. (1)

Definition
(X,B) defined on some (Ω,F ,F,P) is a weak solution of (1) if
I B is an F-fBm;
I X is adapted to F;
I ∃(Kt)t∈[0,T ] such that, a.s.,

Xt = X0 +Kt +Bt, ∀t ∈ [0, T ];

I ∀(ϕn)n∈N smooth bounded functions converging to ϕ in Cγ−,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

ϕn(Xr)dr −Kt

∣∣∣∣→ 0 in proba.

10 / 23
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Weak existence

Theorem ([Anzeletti, R. and Tanré’21])
Let ϕ ∈ Cγ , γ ∈ R. Assume that

γ >
1

2

(
1− 1

H

)
.

Then there exists a weak solution X to (1) s.t. X −B ∈ Cκ[0,T ](L
m),

∀κ ∈ (0, 1 +Hγ ∧ 0] \ {1} and m ≥ 2.

Example
If ϕ = δ0 (∈ C−1) and d = 1, one must choose H < 1

3 .
Then X −B has Hölder regularity 1−H (> H), hence X is not
reflected.
See [Anzeletti’23] and [Butkovsky et al.’23] for extension to H < 1

2 .
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The basic ingredient is the stochastic sewing lemma

Lemma ([Lê’20])
Let m ∈ [2,∞). Let A : ∆0,1 → Lm(Ω) s.t. As,t is Ft-measurable.
Assume ∃Γ1,Γ2 ≥ 0, and ε1, ε2 > 0 s.t. ∀(s, t) ∈ ∆0,1 and u := s+t

2 ,

‖E[δAs,u,t| Fs]‖Lm ≤ Γ1 (t− s)1+ε1 ,

‖δAs,u,t‖Lm ≤ Γ2 (t− s) 1
2 +ε2 .

Then ∃(At)t∈[0,1] s.t. ∀t ∈ [0, 1] and any sequence of partitions
Πk = {tki }

Nk
i=0 of [0, t] with mesh size going to zero,

At = lim
k→∞

Nk∑
i=0

Atki ,tki+1
in proba.

Moreover, ∃C s.t. ∀(s, t) ∈ ∆0,1,

‖At −As −As,t‖Lm ≤ C Γ1 (t− s)1+ε1 + C Γ2 (t− s) 1
2 +ε2 ,

‖E[At −As −As,t | Fs]‖Lm ≤ C Γ1 (t− s)1+ε1 .
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Elements of proof

The SSL leads to key estimates:

“x 7→
∫ 1

0

f(x+Br) dr is more regular than f ”.

13 / 23
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Elements of proof

I We want to construct a tight sequence
Xn
t = x+

∫ t
0
ϕn(Xn

r ) dr +Bt =: x+Kn
t +Bt.

Kn
t −Kn

s =
∫ t
s
ϕn(Br + x+Kn

r ) dr.

I Apply SSL to As,t =
∫ t
s
f(Br +ψs) dr for smooth f , (ψt) F-adapted

and 0 > γ > −1/(2H). Let α ∈ (0, 1) s.t. H(γ − 1) + α > 0.

∥∥∥∫ t

s

f(Br + ψr) dr
∥∥∥
Lm(Ω)

≤ C ‖f‖Cγ (t− s)1+Hγ
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In the Brownian case, recent results of numerical approximation for
irregular drifts: e.g. [Jourdain and Menozzi’21] and [Lê and Ling’21]. See
also [De Angelis et al.’19] for distributional drifts.

In the fractional case, works of Gradinaru, Neuenkirch, Nourdin, Nualart,
etc. for smooth drifts. Recently, [Butkovsky et al.’21] for drifts in Cγ ,
γ > 0.

Let h > 0 and (ϕn) that approximates ϕ in Cγ−(Rd). Consider the
following tamed Euler scheme:

Xh,n
t = X0 +

∫ t

0

ϕn(Xh,n
rh

)dr +Bt,

where rh = hb rhc.
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“Subcritical” case

Theorem ([Goudenège, Haress and R.’22])
Let H < 1

2 . Let ϕ ∈ C
γ and assume

0 > γ > 1− 1

2H
.

Let X denote a weak solution such that X −B ∈ C
1
2 +H

[0,T ] (Lm), m ≥ 2.
Let ε ∈ (0, 1

2 ). Then ∀h ∈ (0, 1) and ∀n ∈ N,

[X −Xh,n]
C

1
2 Lm

≤ C
(
‖ϕn − ϕ‖Cγ−1 + ‖ϕn‖∞h

1
2−ε

+ ‖ϕn‖∞‖ϕn‖C1h1−ε
)
.

15 / 23
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Corollary

Let nh = bh
− 1

1−γ+ d
p c and ϕnh = g 1

nh

∗ ϕ. Then ∀h ∈ (0, 1),

[X −Xh,nh ]
C

1
2 Lm

≤ C h
1

2(1−γ+ d
p
)
−ε
.

Example
If ϕ = δ0 (∈ C−1), one must choose H < 1

4 . Same for any finite measure.

Remark
Working in Besov spaces (instead of Hölder), we can get a rate for
ϕ = δ0 even for H = 1

4 .
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Rates

The orders of convergence obtained here and in [Butkovsky et al.’21] are:

Drift Rate

γ > 0
(

1
2 +Hγ

)
∧ 1− ε

γ = 0 1
2 − ε

γ ∈ (1− 1
2H , 0) 1

2(1−γ) − ε

ϕ ∈ Bγ̃p , γ = γ̃ − d
p = 1− 1

2H and p <∞ < H (non explicit)
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Elements of proof (subcritical case)

[X −Xh,n]
C

1
2 Lm

≤ C
(
‖ϕn − ϕ‖Cγ−1 + ‖ϕn‖∞h

1
2
−ε + ‖ϕn‖∞‖ϕn‖C1h

1−ε
)
.

Denote

Kn
t :=

∫ t

0

ϕn(Xr)dr and Kh,n
t :=

∫ t

0

ϕn(Xh,n
rh

)dr.

Decompose the error as follows:

Xt −Xh,n
t = Kt −Kn

t (2)

+

∫ t

0

(ϕn(Kr +Br)− ϕn(Kh,n
r +Brh))dr (3)

+

∫ t

0

(ϕn(Kh,n
r +Brh)− ϕn(Kh,n

rh
+Brh))dr. (4)
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Consequence - Strong existence and uniqueness

As a consequence of the convergence of the Euler scheme:

Theorem ([Anzeletti, R. and Tanré’21], [Goudenège, Haress and R.’22])

Let H < 1
2 and ϕ ∈ Cγ (or Bγp ). Assume that

γ > 1− 1

2H
(or critical condition).

I There exists a strong solution X.
I Pathwise uniqueness holds in the class of solutions such that

[X −B]C1/2+H
[0,1]

L2,∞ <∞.

I If ϕ is a finite measure, pathwise uniqueness holds.
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Numerical examples in d=1

Consider

dXt = 1{Xt>0}dt+ dBt (5)

and

dXt = δ0(Xt)dt+ dBt. (6)
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Figure: E.M. Haress and L. Goudenège. Log of the strong error against log(h).
Left: Equation (5). Observed slope ≈ 0.5, theoretical order = 1/2.
Right: Equation (6). Observed slope ≈ 0.25, theoretical order = 1/4.
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Density of the solution

I Regularity of the density: Previous results by [Olivera-Tudor’19],
[Galeati et al’22].

Theorem (Anzeletti, R. and Tanré’23+)
Let γ > 1− 1

2H . Then ∀t > 0, Xt has a density and

L(X·) ∈ L1B
1
H−1−ε
1 ∩ L2C 1

2H−
1
2−d−ε.

I Towards McKean-Vlasov equations: for b ∈ C?,Xt = x+

∫ t

0

b ∗ µs(Xs) ds+Bt

µt = L(Xt).

I Gaussian upper and lower bounds for γ > 2− 1
2H . See also

[Li-Panloup-Sieber’23].

21 / 23



Introduction Weak existence The tamed Euler scheme Perspectives

Density of the solution

I Regularity of the density: Previous results by [Olivera-Tudor’19],
[Galeati et al’22].

Theorem (Anzeletti, R. and Tanré’23+)
Let γ > 1− 1

2H . Then ∀t > 0, Xt has a density and

L(X·) ∈ L1B
1
H−1−ε
1 ∩ L2C 1

2H−
1
2−d−ε.

I Towards McKean-Vlasov equations: for b ∈ C?,Xt = x+

∫ t

0

b ∗ µs(Xs) ds+Bt

µt = L(Xt).

I Gaussian upper and lower bounds for γ > 2− 1
2H . See also

[Li-Panloup-Sieber’23].

21 / 23



Introduction Weak existence The tamed Euler scheme Perspectives

Density of the solution

I Regularity of the density: Previous results by [Olivera-Tudor’19],
[Galeati et al’22].

Theorem (Anzeletti, R. and Tanré’23+)
Let γ > 1− 1

2H . Then ∀t > 0, Xt has a density and

L(X·) ∈ L1B
1
H−1−ε
1 ∩ L2C 1

2H−
1
2−d−ε.

I Towards McKean-Vlasov equations: for b ∈ C?,Xt = x+

∫ t

0

b ∗ µs(Xs) ds+Bt

µt = L(Xt).

I Gaussian upper and lower bounds for γ > 2− 1
2H . See also

[Li-Panloup-Sieber’23].
21 / 23



Introduction Weak existence The tamed Euler scheme Perspectives

Stochastic heat equation with singular drift

∂tu(t, x) =
1

2
∂2
xxu(t, x) + ϕ(u(t, x)) + Ẇ (t, x) (7)

I Bounebache and Zambotti’14 considered ϕ a measure. Motivations
from random interface models, see e.g. Funaki.

I [Athreya et al.’23] proved strong WP for any finite measure ϕ.

I For each fixed space point, the free SHE (that is, (7) with ϕ = 0)
behaves “qualitatively” like an fBM with Hurst H = 1/4.

Theorem (Goudenège, Haress and R.’23+)
The finite-differences scheme, with Euler discretisation in time for (7)
converges to u with a rate.
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Merci de votre attention!
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