Estimation of the parameter of the Skew Brownian motion

Antoine Lejay (IECL & Inria, Nancy, France)

From joint works with

Sara Mazzonetto (Nancy, France) Ernesto Mordecki (Montevideo, Uruguay) Soledad Torres (Valparaíso, Chile)

19 June 2023 — Journées de Probabilités

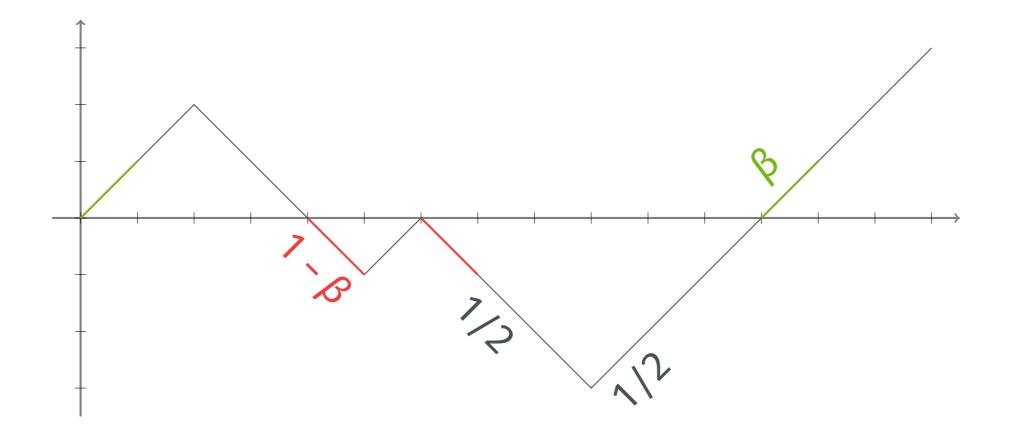
SRW = Random walk on \mathbb{Z} with the dynamic

$$\mathbb{P}_{\beta}[S_{n+1} = x + 1 \mid S_n = x] = \begin{cases} \beta & \text{if } x = 0\\ 1/2 & \text{if } x \neq 0 \end{cases}$$

$$\mathbb{P}_{\beta}[S_{n+1} = x - 1 \mid S_n = x] = \begin{cases} 1 - \beta & \text{if } x = 0\\ 1/2 & \text{if } x \neq 0 \end{cases}$$

How to estimate $\beta \in (0, 1)$ from one path with N samples points?

Skew Random Walk (SRW)



Skew Random Walk

• The likelihood with N steps is

$$\begin{split} \Lambda_N(\beta) &= \beta^{N_+} (1-\beta)^{N_-} \times \frac{1}{2}^{N-N_+-N_-}, \\ \text{with } N_+ &= \text{ $\#$ upward transitions from 0,} \\ N_- &= \text{ $\#$ downward transitions from 0.} \end{split}$$

- Only the pairs $(S_k = 0, S_{k+1})$ contain information about β .
- The maximum likelihood estimator (MLE) is

$$\beta_{N} = \frac{N_{+}}{N_{+} + N_{-}} = \frac{N_{+}}{A} \text{ with } A = \#\{k \le N \mid S_{k} = 0\}.$$

• $\beta_{N} = \frac{\# \text{ positive excursions}}{\# \text{ excursions}}.$

Theorem (AL, 2018)

(i) β_N is a **consistent estimator** of β , that is β_N converges in probability to β under \mathbb{P}_{β} .

(ii) $N^{1/4}(\beta_N - \beta)$ converges in distribution to $\sqrt{\beta(1 - \beta)H}$ with

$$H \stackrel{\text{law}}{=} G/\sqrt{L_1}$$
 mixed normal distribution,
 $G \sim N(0, 1)$,
 L_1 Brownian motion's **local time**.

Why mixed normal limit? Why N^{1/4} and not N^{1/2}?

- The MLE depends from a random number of samples A (the occupation time).
- The occupation time A at 0 is of order \sqrt{N} .
- A/\sqrt{N} converges in distribution to the local time L_1 at point 0,

$$L_1 := \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_0^1 \mathbf{1}_{B_s \in [-\epsilon, \epsilon]} \, \mathrm{d}s, \text{ a.s.}$$

- **Rem** With A^+ := time spent above 0, $\mathbb{E}[A^+/N] = \beta$. Yet A^+/N converges in distr. to a variant of the arc-sine law
 - \implies A^+/N is an useless estimator of β .

Skew Brownian motion

Skew Brownian motion (SBM) of parameter $\theta \in (-1, 1)$:

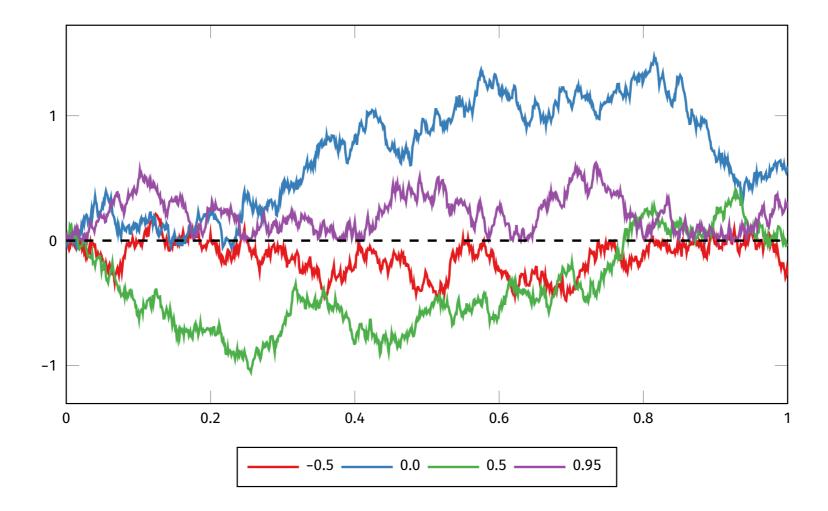
 $X_t = B_t + \theta L_t(X), \ t \ge 0$

with B Brownian motion

 $L_t(X)$ local time at point 0 of X (not B)

- The SBM is the limit (Donsker) of the Skew Random walk with $\beta = (1 + \theta)/2$.
- •There are 10+ possible constructions of the SBM.
- •Away from 0, the SBM behaves like a BM. The local time acts only when the process reaches 0.
- Its distribution is singular with the one of the BM.

Skew Brownian motion

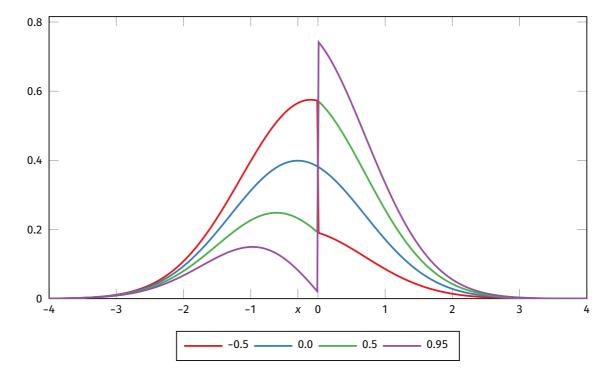


Density transition function for the SBM

The SBM has an explicit formula for the density transition function (Walsh, 1978)

$$p_{\theta}(t, x, y) = g(t, y - x) + \theta \operatorname{sgn}(y) \cdot g(t, |x| + |y|)$$

 $g(t, \cdot)$ Gaussian density of N(0, t)



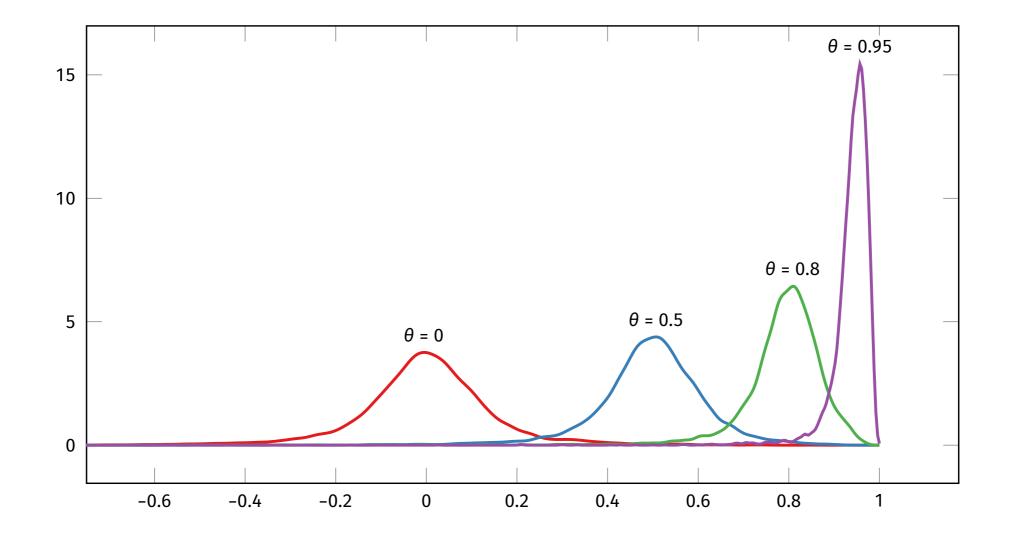
MLE for the SBM

Data: ${X_{i\Delta t}}_{i=0,...,n}$ with $\Delta t := T/n$ \rightarrow high-frequency, up to time T.

$$\begin{split} \Lambda_n(\theta) &:= \prod_{i=0}^{n-1} p_{\theta}(\Delta t, X_{i\Delta t}, X_{(i+1)\Delta t}) & \text{likelihood} \\ L_n(\theta) &:= \log \Lambda_n(\theta) & \text{log-likelihood (concave)} \\ S_n(\theta) &:= \partial_{\theta} L_n(\theta) & \text{score} \\ \text{The MLE } \theta_n & \text{is} \\ \theta_n &:= \arg \max_{\theta} L_n(\theta) \text{ or equivalently } S_n(\theta_n) = 0. \end{split}$$

 θ_n is easy to compute numerically.

MLE for the SBM



MLE for the SBM

Theorem (AL-EM-ST, 2019; AL-SM, 2023)

(i) θ_n is a **consistent estimator** of θ under \mathbb{P}_{θ} . (ii) Asymptotic mixed-normality:

$$n^{1/4}(\theta_n - \theta) \xrightarrow[n \to \infty]{dist} s(\theta) \frac{W(L_T)}{L_T}$$

with

W Brownian motion indep. from X L SBM's local time (its law does not depend on θ) $s(\theta) \approx \frac{\sqrt{1 - \theta^2}}{\sqrt{1.3 + 0.23\theta^2 + 0.07\theta^4}}$ (not exact yet accurate)

Key result on convergence: LLN

For f such that $\int x^2 |f(x)| dx < +\infty$,

$$\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} f(\sqrt{n}X_{iT/n}, \sqrt{n}X_{(i+1)T/n}) \xrightarrow[n \to \infty]{} C(F)L_T$$

$$c(F) := (1 + \theta) \int_0^{+\infty} F(x) \, dx + (1 - \theta) \int_{-\infty}^0 F(x) \, dx$$

$$F(x) := \int_{-\infty}^{+\infty} p_\theta(1, x, y) f(x, y) \, dy.$$

(J. Jacod, 1998) for the BM and SDE
(AL, EM & ST, 2019) for the SBM

This LLN mixes several behaviors:

- transformation into a martingale $\rightsquigarrow F(x) := \mathbb{E}_{x}[f(x, X_{1})]$
- averaging over the invariant measure of the SBM $((1 \pm \theta)1_{\pm x \ge 0} dx) \rightsquigarrow$ expression of c(F)
- concentration around 0 \rightsquigarrow local time
- A CLT may also be proved, with more technicality:
 - •(J. Jacod, 1998) for the BM and SDE
 - •(S. Mazzonetto, 2019) for SBM, see also (C.Y. Robert, 2022)

Expansion of the MLE

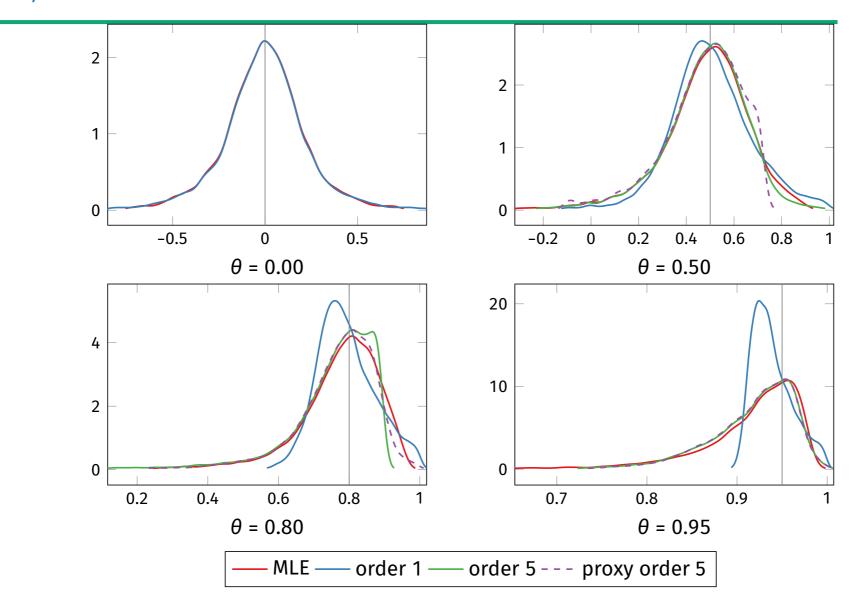
Define

$$d_{k,n}(\theta) := \frac{-1}{k!} \frac{\partial_{\theta}^{k} S_{n}(\theta)}{\sqrt{n}} \frac{\sqrt{n}}{\partial_{\theta} S_{n}(\theta)} \xrightarrow{\text{proba}} d_{k}(\theta) := \frac{-\xi_{k}(\theta)}{k!\xi_{1}(\theta)}.$$

- ξ_k are defined by integrals.
- $\xi_1(\theta) \neq 0$ (linked to Fisher information).
- If $\theta = 0$, then $\xi_{2k}(0) = 0$, $k \ge 0$.
- Joint convergence holds for $(n^{1/4}d_{2k,n}(0))_{k \le m}$ toward a Gaussian vector (CLT).

Theorem (AL-EM-ST, 2014 for
$$\theta = 0$$
; AL-SM, 2023)
 $n^{1/4}d_{0,n}(\theta) \xrightarrow{\text{stable}}{n \to \infty} s(\theta) \frac{W(L_T)}{L_T} \stackrel{\text{law}}{=} s(\theta) \frac{G}{T^{1/4}\sqrt{L_1}}, \quad G \sim N(0, 1)$
 $\theta_n = \theta + \sum_{k \ge 1} D_{k,n}(\theta) d_{0,n}(\theta)^k$ [Expansion in $n^{-1/4}$]
where $D_{1,n}(\theta) := 1$ and
 $D_{k,n}(\theta) := \sum_{m=2}^k d_{m,n}(\theta) \sum_{k_1 + \dots + k_m = k} D_{k_1,n}(\theta) \cdots D_{k_m,n}(\theta).$

Using $D_{k,n}(\theta)$ their limits ("proxy") to approximate θ_n



- When $\theta = 0$ (the SBM is a BM), $D_{2,n}(0)$ vanishes asymptotically.
- We then replace the LNN by the CLT when possible \implies Some of the $n^{-1/2}$ are replaced by $n^{-1/4}$.
- When $\theta = 0$, $\theta_n = d_{0,n}(0) + \sum_{\substack{k \ge 3 \\ k \text{ odd}}} \frac{a_{k,n}}{n^{k/4}}$ where the $a_{k,n}$'s are given by a recursive relation, and

$$a_{k,n}(\theta) \xrightarrow[n \to \infty]{} \text{polynomial}(\sqrt{L_T}, G_1, \dots, G_n).$$

What we have done? • Consistency and asymptotic property of the MLE θ_n : asymptotic mixed normality, rate of convergence 1/4.

- Convergence of the score of its derivatives.
- Study of the behavior of the coefficients with θ (phase transition, boundary layer).
- Key methods: extensions of CLT and LLN of (J. Jacod, 1998).
 - Expansion of the MLE of power of $1/n^{1/4}$.
- Key method: "Asymptotic inverse function theorem" (AL-SM, 2022)
 - Numerical studies: simulation of the SBM (AL-G. Pichot, 2012).

•The asymptotic expansion aims at quantifying the semiasymptotic behavior of the MLE. We obtained

$$\begin{aligned} \theta_n &= F_n(P_n) \\ P_n \text{ (asymptotically pivotal) } \xrightarrow[n \to \infty]{law} G/\sqrt{L_T} \\ F_n \text{ (random) } \xrightarrow[n \to \infty]{} F \text{ (deterministic)} \end{aligned}$$

- F_n is well approximated by a polynomial of low order (empirically around 5).
- How to control the distance between P_n and $G/\sqrt{L_T}$?
- How to build confidence intervals beyond Wald's one? Hypotheses tests?

References

- A. Lejay, S. Mazzonetto, Maximum likelihood estimator for skew Brownian motion: the convergence rate, preprint, 2023.
- A. Lejay, S. Mazzonetto, Beyond the delta method, preprint, 2022.
- S. Mazzonetto, Rates of convergence to the local time of Oscillating and Skew Brownian Motions, preprint 2019.
- A. Lejay, E. Mordecki, S. Torres, Two consistent estimators for the Skew Brownian motion, ESAIM Probab. Stat 20, 2019.
- A. Lejay, Estimation of the bias parameter of the skew random walk and application to the skew Brownian motion, Stat. Inference Stoch. Process. 21, 2018.
- A. Lejay, E. Mordecki, S. Torres, Is a Brownian motion skew?, Scand. J. Stat. 5, 2014.