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Some background
• Kunita’s flow theory: ( ∂x f (XT ) = f ′(XT )DxXT = f ′(XT )ET , b , σ ∈ C1

b )

Xt =x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs

Et =1 +
∫ t

0
b ′(Xs)Esds +

∫ t

0
σ′(Xs)EsdWs

Et = exp
(∫ t

0
σ′(Xs)dWs +

∫ t

0

(
b −

σ′(Xs)2

2

)
ds

)
Many examples in “regular" situations are known. (H. Kunita and others) In various cases, one
is interested in computing

∇E [f (XT )] = E [∇f (XT )DxXT ] .

In the present research, we are interested in one “irregular” case: The case of the elliptic
killed diffusion with regular coefficients. We have divided our study in stages:

1. One dimensional case: Single barrier (Joint with D. Crisan) Local times

2. Multi-dimensional case: Half space case. No correlation at the boundary (Joint with D.
Crisan) Jumps

3. Multi-dimensional case: Smooth domain. Some directions of correlation at the boundary
are allowed (Joint with F. Antonelli) Covariance+Curvature



Stopped processes

Let X be a one dimensional uniformly elliptic (σ(y) ≥ c0 > 0 for all y ∈ R) diffusion starting at
x > 0. Consider τ := inf{t > 0; Xt = 0}.

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs

Question: Is it possible to give a weak meaning to ∂xXT∧τ?

We are not interested in distribution valued random variables.

We want a result that has an interpretation and is close to pathwise differentiation

I We need to change the notion of derivative (killing<->reflection): There exists (Y ,E) such
that for every f ∈ C1

b

∂xE
[
f (XT )1(τ>T )

]
= E [f ′(YT )ET ]



•Why change the base process?

I The derivative of the killed process is a pair (Y ,E) such that for any f ∈ C1
b with f (0) = 0,

we have

∂xE
[
f (XT )1(τ>T )

]
= E [f ′(YT )ET ]

I In fact, it is not difficult to expect that Y has to be a reflected process. Densities of
stopped (reflected ) BM ( no-drift !! and 1-D!! ):

q−+
T (x, y) := gT (y − x)

killed
−/+

YT (refl)
gT (y + x) =

(
1 ∓ e−2 yx

T
)
gT (y − x),

= (1 ± pT (x, y)) gT (y − x), gT (y) =
e−

y2
2T

√
2πT

∂xE
[
f (XT )1(τ>T )

]
=∂x

∫ ∞

0
f (y)q−T (x, y)dy =

∫ ∞

0
f ′(y)q+

T (x, y)dy = E [f ′(YT )ET ] .

Strategy in a nutshell

∂xE
[
f (XT )1(τ>T )

]
= ∂xE [f (XT )(1 − pT (x,XT ))] =E [f ′(XT )(1 + pT (x,XT ))ET ] = E [f ′(YT )ET ]

Easier said than done!



1-dim with no drift: the symmetric case

Xt =x +
∫ t

0
σ(Xs)dWs ,

Yt =x +
∫ t

0
σ(Ys)dWs + Lt ,

Lt =
∫ t

0
1(Ys =0)d|L |s ,

Et =1 +
∫ t

0
σ′(Ys)EsdWs .

Theorem : ∂xE
[
f (XT )1(τ>T )

]
= E [f ′(YT )ET ]

Some ideas about the proof:

I Use approximations, do the calculations and recognize the different elements that appear
in the formulas.

I The technical part is to prove that second derivatives are bounded (Ascoli-Arzela)



The drift situation. (Non-symmetric)
The killed probabilistic expression remain but Harrison (1985, p. 49) states that the density of
reflected Brownian motion with drift is

e−
(y−x−bt)2

2at + e
2by
a e−

(y+x+bt)2
2at −

2b
a

e
2by
a Φ

(
y + x + bt

σ
√

t

)
.

Here a = σ2. What to expect?? Stopped density remains unchanged with the Girsanov weight
on it. E

[
f (XT )1(τ>T )

]
= Ẽ

[
f (XT ) dP

dQ1(τ>T )

]
dP
dQ

(X ) = exp
(∫ T

0
ba−1(Xs)dXs −

1
2

∫ T

0
b2a−1(Xs)ds

)
Change to Y gives

dP
dQ

(Y ) = exp
(∫ T

0
bσ−1(Ys)dWs −

1
2

∫ T

0
b2a−1(Ys)ds +

∫ T

0
ba−1(Ys)dLs

)

Theorem
Let f ∈ C1

b then ∂xE
[
f (XT )1(τ>T )

]
= E[f ′(YT )ET ] where

Et =1 +
∫ t

0
Es

(
b ′(Ys)ds + σ′(Ys)dWs + 2

b
σ2

(0) dLs

)
.

The factor 2 is result of the Girsanov’s theorem (+1) and the derivative of the crossing
probabilities (+1).



Theorem
Let f ∈ C1

b then ∂xE
[
f (XT )1(τ>T )

]
= E[f ′(YT )ET ] where

Et =1 +
∫ t

0
Es

(
b ′(Ys)ds + σ′(Ys)dWs + 2

b
σ2

(0) dLs

)
.

The factor 2 is result of the Girsanov’s theorem (+1) and the derivative of the crossing
probabilities (+1). Let ρT = sup{s < T ; Ys = 0} ∨ 0

∂xPT f (x) = ∂xE0,x [f (XT∧τ)] = E0,x [f ′(YT )ET ] +
b
σ2

(0)E0,x

[
f (YT )EρT 1(τ≤T )

]
.

∂xPT f (x) = E[f ′(YT )ET ] +
b
a

(0)E
[∫ T

0
∂xPT−s f (0)EsdBs

]
.

Solve the linear equation to obtain the result



Half space case.

• In the multi-dimensional case there should be more complex boundary effects involving the
normal and tangential directions. In particular, local time terms will only appear in the normal
directions and in the tangential ones jump effects will also appear.

A simple example: Let us consider the domain D = [0,∞) × R and for a, c ∈ R

Xt := (X1
t ,X

2
t ) = (x1 + aW1

t , x2 + cW2
t ).

Then using a slight extension of our results in 1D, one obtains that for
τ(Y ) := inf{s ≥ 0; Y1

s = 0} then for f ∈ C1
b (R2,R) with f (0, x2) = 0 for all x2 ∈ R,

∇xE
[
f (XT∧τ)1τx1 (X )>T

]
=E [∇f (YT )ET ]

Et :=
(
1 0
0 1τ(Y )>t

)
, t ∈ [0,T ].

This jump is a 0-th order behavior.



Lemma
The following probabilistic representation is valid for the killed process semigroup with
x1 > L = 0, a1 := ‖σ1‖

2 and σ1 := (σ1,1, ..., σ1,d ).

E
[
f (XT )1(τ>T )

]
=E

f (XT )1(X1
T>0)

1 − e−2
X1

T x1
a1T


Again the killed expression is the same. In a similar fashion, we have for the reflected process
Yt = Xt + `t ∈ Hd

L

E [f (YT )] =E
f (XT )1(X1

T≥L )

1 + (1 − 2ρ2 + ξ)e−2
X1

T x1
a1T


ρ2 :=Σ−1

1,1Σ1,2Σ
−1
2,2Σ2,1

ξ :=2(1 − ρ2)1/2g

X1 − x1 − Σ1,2Σ−1
2,2(X2 − x2) − 2X1(1 − ρ2)

(1 − ρ2)1/2Σ1/2
1,1 t


×

−2Σ1,2Σ−1
2,2(X2 − x2) + 2ρ2X1

Σ1,1
√

t


g(x) :=Φ(x)e

x2
2 .



Hypothesis (Hd
0 = [0,∞) × Rd−1)

The functions b , σk ∈ C2
b (Rd ) are bounded, a = (a ij) = σσ∗ is uniformly elliptic and it satisfies

a1`(y) = a`1(y) = 0 for y ∈ ∂Hd
0 and for ` , 1. This hypothesis implies the following condition

for ` , 1

a`1(y) = â`(y)y1.

Here â` ∈ C1
b (R) and is bounded.

Theorem: ∇xE[f (XT )1(τ>T )] =E[∇f (YT )ET ].

Here, E solves for ρt := sup{s < t ; Y1
s = 0} ∨ 0 and π(y) :=

∑d
`=2 â`(y)e`(e1)∗

Et =I1(ρt =0) + 1(ρt>0)e1(e1)∗Eρt−

+
∫ t

ρt

(
Db(Ys)ds + Dσk (Ys)dW k

s + 2a11(Ys)−1b1(Ys)dLs

)
Es .

Xt =x +
∫ t

0
b(Xs)ds +

∫ t

0
σk (Xs)dW k

s ,

Yt =x +
∫ t

0
b(Ys)ds +

∫ t

0
σk (Ys)dW k

s + e1Lt ∈ Hd
0 ,



BUT , if f is a function of only the first component, we have

E
[
f (Y1

T )
]

=E
f (X1

T )1(X1
T>0)

1 + e−2
X1

T x1

a1T

 .
Suppose the half space case and use the Euler scheme: Xi+1 = Xi + σi∆iW k .

A way to obtain the classical result is fi := Ei [f (Xn)].

Di−1Ei−1[fi ] = Ei−1[Di fi(I + Di−1σ
k
i−1Zk

i )].

Then take limits on: D0E0[fn] = DxE[f (Xn)] = E[Df (Xn)
∏n

j=1(I + Dj−1σ
k
j−1Zk

j )]



Method of proof

For pi = exp
(
−2

X1
i X1

i−1
a11

i−1∆

)
, consider the approximation using Girsanov

DxE
[
f (XT )1(τ>T )

]
≈ Dx Ẽ

f (Xn)Kn

n∏
j=1

1(X1
j >0)(1 − pj)


Iterative differentiation of DiẼi

[
f (Xi+1)κi+11(X1

i+1>0)(1 − pi+1)
]
gives

Dx Ẽ

f (Xn)Kn

n∏
j=1

1(X1
j >0)(1 − pj)

 ≈ Ẽ
Df (Xn)EnKn

n∏
j=1

1(X1
j >0)(1+pj)


+

n∑
i=1

Ẽ

f (Xn)
bi−1

ai−1
1(X1

i >0)piEi−1Kn

i−1∏
j=1

1(X1
j >0)(1+pj)

n∏
j=i+1

1(X1
j >0)(1−pj)


Take limits. The important point appears in the constant terms of En =

∏n
j=1 ej

ei :=I(1 − pi) + e1(e1)>pi + ēi

ēi :=ri + Dbi−1∆ (1 − pi) + πi−1X1
i−1pi

ri := (1 − pi) Dσk
i−1∆iW k +X1

i−1σ
k
i−1Di−1

(
σ1k

i−1

a11
i−1

)
pi



DIFFERENTIATION OF CROSSING PROBABILITIES

Let Gi := g(Xi−1,∆iW k ) for g : Rd × Rd → R a Lipschitz function. Then first, we have the
following representation for τ(i − 1) := inf{s > ti−1; X1

s ≤ 0} where Xi = Xi−1 + σk
i−1W k

i . In this

case pi = exp
(
−2

X1
i X1

i−1
a11

i−1∆

)
is the crossing probability for half space D = [0,∞) × Rd−1. That is,

Ei−1

[
Gi1(τ(i−1)>ti )

]
= Ei−1 [Gi(1 − pi)]

Differentiation gives:(Dk
i denotes derivative wrt to the k -th noise)

Ei−1 [GiDi−1pi ] = −2Ei−1

[
Dk

i GiDi−1

(
σ1k

i−1X
1
i−1

a11
i−1

)
pi

]
,

In the above situation Gi = fiκi .

Therefore the above terms will also create local time and jumps .

local time: Di−1

(
σ1k

i−1
a11

i−1

)
X1

i−1pi

jumps + local time:
σ1k

i−1Di−1X1
i−1

a11
i−1

pi

Girsanov term eκi , introduces more local time terms.



Conclusions and Comments

I Derivatives of killed processes can jump everytime there is a chance that the process may touch the
boundary. The directions of jump are determined by the interaction between correlation and the
boundary geometry.

I Derivatives are affected by local time due to interaction of the boundary with drift and correlation
direction.

I In this sense, curvature of the boundary plays an important role in the local time terms.

I The technically difficult part is to prove boundedness of second derivatives for the approximating
sequence and recognizing each term in the method of proof.

I From the method of proof one can also obtain BEL and IBP formulas based on excursions. In
particular, the last excursion from the boundary. But note that this is only the elliptic case. For the
hypoelliptic case, compare with Thalmaier and coauthors.

I “Dual” descriptions are available for derivatives of reflected processes

I Future projects: Description using pde’s will be difficult in gemeral due to the jumps and the
non-adapted ρt (honest time). Uniqueness? Exit times?
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