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Introduction



A Galton-Watson marked tree (T, (M(u);u ∈ T)

Under a probability P, let (N,M) be a random variable taking values
in N× (0,∞), the offspring N satisfies E[N] > 1.

Let m ∈ N∗. If the generation m− 1 of T is not empty, then any vertex
u ∈ T in the generation n− 1 gives progeny to Nu marked children
(u1,M(u1)), . . . , (uNu ,M(uNu)) independently of other vertices in
generation n− 1 according to the law of (N,M), thus forming the
generation m.
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A Galton-Watson marked tree (T, (M(u);u ∈ T)

Under a probability P, let (N,M) be a random variable taking values
in N× (0,∞), the offspring N satisfies E[N] > 1.

E = (T, (M(u);u ∈ T) is a super-critical Galton-Watson marked tree
and let P∗ := P(·| non-extinction ).
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Random walk on E

For a realization of E = (T, (M(u);u ∈ T)), introduce a
T ∪ {e∗}-valued random walk X = (Xj)j∈N under the quenched
probability PE , starting from e and reflected in e∗ with the following
transition probabilities: for any u &= e∗

pE(u,u∗) = 1
1+

∑Nu
j=1M(uj)

, pE(u,ui) = M(ui)
1+

∑Nu
j=1M(uj)

.
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Random walk on E

For a realization of E = (T, (M(u);u ∈ T)), introduce a
T ∪ {e∗}-valued random walk X = (Xj)j∈N under the quenched
probability PE , starting from e and reflected in e∗ with the following
transition probabilities: for any u &= e∗

pE(u,u∗) = 1
1+

∑Nu
j=1M(uj)

, pE(u,ui) = M(ui)
1+

∑Nu
j=1M(uj)

.

Define the annealed probabilities

P := E[PE(·)] and P∗ := E∗[PE(·)].
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The slow random walk on E

Introduce the following function

ψ(t) := E
[ ∑

|u|=1
M(u)t

]
,

and assume
ψ(1) = 1 and ψ′(1) = 0. (1)

Properties, under (1)

• X is null recurrent (Faraud 2011),
• X is slow: P∗-almost surely

1
(log n)3 max

j≤n
|Xj| −→n→∞

8
3π2ψ′′(1) (Faraud, Hu, Shi 2012),

and (|Xn|/(log n)2)n≥2 converges in law under P∗ to a positive
random variable (Hu, Shi 2016).
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The slow random walk on E

Introduce the following function

ψ(t) := E
[ ∑

|u|=1
M(u)t

]
,

and assume
ψ(1) = 1 and ψ′(1) = 0. (1)

Properties, under (1)
( log nn Ln)n∈N∗ converges in P∗-probability (Hu, Shi 2016).
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The (sub-)diffusive random walk on E

Now assume
ψ(1) = 1, ψ′(1) < 0, (2)

and let
κ := inf{t > 1; ψ(t) = 1} ∈ (1,∞).

Properties, under (2)

• X is null recurrent (Faraud 2011),
• P∗-almost surely

max
j≤n

|Xj| ≈ n1− 1
κ∧2 (Hu, Shi 2007).

(|Xn|/n1−
1

κ∧2 )n∈N∗ if κ &= 2 and
(
( log nn )1/2|Xn|

)
n∈N∗ if κ = 2

converge in law under P∗ (Faraud 2011; Aïdékon, de Raphélis 2017
and de Raphélis 2022).

8



The (sub-)diffusive random walk on E

Now assume
ψ(1) = 1, ψ′(1) < 0, (2)

and let
κ := inf{t > 1; ψ(t) = 1} ∈ (1,∞).

Properties, under (2)

• X is null recurrent (Faraud 2011),
• P∗-almost surely

max
j≤n

|Xj| ≈ n1− 1
κ∧2 (Hu, Shi 2007).

(|Xn|/n1−
1

κ∧2 )n∈N∗ if κ &= 2 and
(
( log nn )1/2|Xn|

)
n∈N∗ if κ = 2

converge in law under P∗ (Faraud 2011; Aïdékon, de Raphélis 2017
and de Raphélis 2022).

8

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



The (sub-)diffusive random walk on E

Now assume
ψ(1) = 1, ψ′(1) < 0, (2)

and let
κ := inf{t > 1; ψ(t) = 1} ∈ (1,∞).

Properties, under (2)

• X is null recurrent (Faraud 2011),

• P∗-almost surely

max
j≤n

|Xj| ≈ n1− 1
κ∧2 (Hu, Shi 2007).

(|Xn|/n1−
1

κ∧2 )n∈N∗ if κ &= 2 and
(
( log nn )1/2|Xn|

)
n∈N∗ if κ = 2

converge in law under P∗ (Faraud 2011; Aïdékon, de Raphélis 2017
and de Raphélis 2022).

8



The (sub-)diffusive random walk on E

Now assume
ψ(1) = 1, ψ′(1) < 0, (2)

and let
κ := inf{t > 1; ψ(t) = 1} ∈ (1,∞).

Properties, under (2)

• X is null recurrent (Faraud 2011),
• P∗-almost surely

max
j≤n

|Xj| ≈ n1− 1
κ∧2 (Hu, Shi 2007).

(|Xn|/n1−
1

κ∧2 )n∈N∗ if κ &= 2 and
(
( log nn )1/2|Xn|

)
n∈N∗ if κ = 2

converge in law under P∗ (Faraud 2011; Aïdékon, de Raphélis 2017
and de Raphélis 2022).

8



The (sub-)diffusive random walk on E

Now assume
ψ(1) = 1, ψ′(1) < 0, (2)

and let
κ := inf{t > 1; ψ(t) = 1} ∈ (1,∞).

Properties, under (2)

• X is null recurrent (Faraud 2011),
• P∗-almost surely

max
j≤n

|Xj| ≈ n1− 1
κ∧2 (Hu, Shi 2007).

(|Xn|/n1−
1

κ∧2 )n∈N∗ if κ &= 2 and
(
( log nn )1/2|Xn|

)
n∈N∗ if κ = 2

converge in law under P∗ (Faraud 2011; Aïdékon, de Raphélis 2017
and de Raphélis 2022).

8



The (sub-)diffusive random walk on E

Now assume
ψ(1) = 1, ψ′(1) < 0, (2)

and let
κ := inf{t > 1; ψ(t) = 1} ∈ (1,∞).

Properties, under (2)
(Ln/n 1

κ∧2 ) if κ &= 2 and (Ln/(n log n)1/2) if κ = 2 converge in law
under P∗ (Hu 2017; K 2023+).
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Range of the diffusive random walk on E

Let T ∈ N∗ and introduce the sub-tree RT := {u ∈ T; ∃j ≤ T : Xj = u}
of T. RT is the range of X up to the time T.

Now assume (2) and κ > 2 (the diffusive case).

Proporties (Aïdékon, de Raphélis 2017)
En P∗-probabilité

1
n#Rn −→

n→∞
constant C1 > 0,

and, in law
C2
n1/2Rn −→

n→∞
T(|Bt|)t∈[0,1] ,

where C1, C2 > 0 are explicit constants.
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Generalized range in the diffusive
case



Constraints on visited vertices

Let m ∈ N∗. Note Tm the m-th generation of the T:

Tm = {u ∈ T : |u| = m}.

For any k ∈ N, k ≥ 2, introduce

∆k
m := {x = (x(1), . . . , x(k)) ∈ (Tm)×k; ∀ i &= j, x(i) &= x(j)},

the set of k-tuples of distinct vertices of Tm.
Let n ∈ N and Bkn ⊂ T×k. Introduce the following range

Rkn :=
∑

x∈∆k
mn

1{Ln
x≥1}1{x∈Bkn},

where, for any x = (x(1), . . . , x(k)) ∈ ∆k
m, Lnx = min1≤i≤k Lτn

x(i) .
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Constraints on visited vertices

Let x = (x(1), . . . , x(k)) ∈ ∆k
m. Define the first coalescent time Sk(x)− 1

of the vertices x(1), . . . , x(k) by

Sk(x) := min{p > 0; ∀i &= j, |x(i) ∧ x(j)| < p}.

Let p ∈ {1, . . . ,m}. Introduce the subset Ckm,p of ∆k
m

Ckm,p := {x ∈ ∆k
m; Sk(x) ≤ p}.
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Constraints on visited vertices

We assume here that for all n ∈ N∗, Bkn = Bk where the set Bk
satisfies the following hereditary hypothesis:

Hereditary hypothesis
There exists g ∈ N∗ such that for any p ≥ g, if |x(i)| = m ≥ p and
x = (x(1), . . . , x(k)) ∈ Ckm,p, then

x ∈ Bk ⇐⇒ xp ∈ Bk,

where xp = ((x(1))p, . . . , (x(k))p).
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Constraints on visited vertices: a general result

Theorem (K 23)
Let mn = o(n1/2), mn ≥ δ log n for some δ > 0. Assume κ > 2k. If the
hereditary hypothesis holds, then, in P∗-probability

1
nk/2

∑

x∈∆k
mn

1{Ln
x≥1}1{x∈Bk} −→

n→∞
(c∞)kA∞(Bk),

where c∞ > 0 is a constant and

A∞(Bk) = lim
"→∞

∑

x∈∆k
"

1{x∈Bk}

k∏

i=1

∏

e<z≤x(i)
A(z).

15



Constraints on visited vertices: examples

For instance, take

• k = 1 and B1 = T

1
n1/2#(Tmn ∩Rτn) −→

n→∞
c∞W∞ in P∗-probability,

where W∞ := limn→∞
∑

|u|=n
∏

e<z≤u M(z);
• k ≥ 2, p ∈ N∗ and Bk = {x; Sk(x) ≤ p}

1
nk/2

∑

x∈Ckmn,p

1{Ln
x≥1} −→

n→∞
(c∞)kA∞({x; Sk(x) ≤ p}) in P∗-probability,

and limp→∞ A∞({x; Sk(x) ≤ p}) = (c∞W∞)k.

• k ≥ 3, λ2, . . . ,λk ∈ N∗ and Bk =
⋂k
i=2{x; |x(i−1) ∧ x(i)| < λi} etc.
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The critical generations

Now, assume that α := limn→∞
mn
n1/2 ∈ (0,∞) exists.

Proposition (K 23+)
In law, under P∗

1
n1/2#(Tmn ∩Rτn) −→

n→∞
c∞W∞Zα,

where (Zt)t≥0 is a CSBP starting from 1 with branching mechanism
λ 0→ c0

W∞
λ2 for some constant c0 > 0.
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Application: a genealogy problem

Pick k ≥ 2 vertices X(1,n), . . . ,X(k,n) uniformly and without
replacement in {u ∈ Rτn ; |u| = mn}.

What does their genealogical tree look like?
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Application: a genealogy problem

Pick k ≥ 2 vertices X(1,n), . . . ,X(k,n) uniformly and without
replacement in {u ∈ Rτn ; |u| = mn}.

What does their genealogical tree look like?
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Application: a genealogy problem

Pick k ≥ 2 vertices X(1,n), . . . ,X(k,n) uniformly and without
replacement in {u ∈ Rτn ; |u| = mn}.

What does their genealogical tree look like? Define the random
k-tuples X(n) := (X(1,n), . . . ,X(k,n)).

Theorem (K 23)
Let mn = o(n1/2), mn ≥ δ log n for some δ > 0. Assume κ > 2k. If the
hereditary hypothesis holds, then,

lim
n→∞

P∗(X(n) ∈ Bk
)
= E∗

[A∞(Bk)
(W∞)k

]
,
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Application: a genealogy problem

Pick k ≥ 2 vertices X(1,n), . . . ,X(k,n) uniformly and without
replacement in {u ∈ Rτn ; |u| = mn}.

What does their genealogical tree look like? Define the random
k-tuples X(n) := (X(1,n), . . . ,X(k,n)).

In particular, for any p ∈ N∗

lim
n→∞

P∗(Sk(X(n)) ≤ p
)
= E∗

[A∞({x; Sk(x) ≤ p})
(W∞)k

]
,

with limp→∞ E∗
[A∞({x; Sk(x)≤p})

(W∞)k

]
= 1.

Similar behaviour as the one observed for the genealogy of a regular
Gaton-Watson super-critical tree (Athreya 2012; Johnston 2019; Harris,
Johnston, Roberts 2020).
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Application: a genealogy problem

Pick 2 vertices X(1,n) and X(2,n) uniformly and without replacement in
{u ∈ Rτn ; |u| = mn}.

Theorem (Andreoletti, K 23+)
Let mn = n1/2, ' ∈ N∗ and b ∈ (0, 1) . The two following limits exist:

p" := lim
n→∞

P∗(|X(1,n) ∧ X(2,n)| < '
)

and
qb := lim

n→∞
P∗(|X(1,n) ∧ X(2,n)| ≥ bn1/2

)
.

Moreover

• lim"→∞ p" ∈ (0, 1), limb→0 pb ∈ (0, 1);
• lim"→∞ p" + limb→0 pb = 1.
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Merci!
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