Genealogy of a random walk on a Galton-Watson tree in random environment

Alexis Kagan (AMSS, Chinese Academy of Sciences)

Journées de Probabilités 2023

19 juin 2023

Outline

1. Introduction

Definitions and notations A random walk on a Galton-Watson marked tree Range of the diffusive random walk on ${\cal E}$

2. Generalized range in the diffusive case

A general result

Application: a genealogy problem

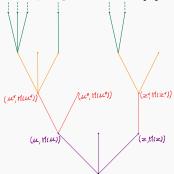
Introduction

A Galton-Watson marked tree $(\mathbb{T}, (M(u); u \in \mathbb{T}))$

Under a probability P, let (N, M) be a random variable taking values in $\mathbb{N} \times (0, \infty)$, the offspring N satisfies $\mathbb{E}[N] > 1$.

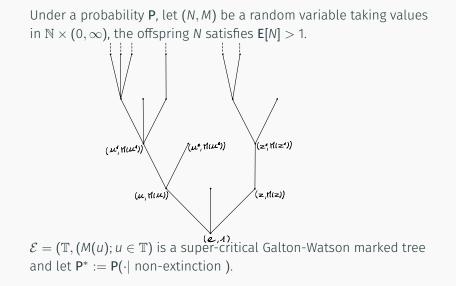
A Galton-Watson marked tree $(\mathbb{T}, (M(u); u \in \mathbb{T}))$

Under a probability P, let (N, M) be a random variable taking values in $\mathbb{N} \times (0, \infty)$, the offspring N satisfies $\mathbb{E}[N] > 1$.



Let $m \in \mathbb{N}^*$. If the generation m - 1 of \mathbb{T} is not empty, then any vertex $u \in \mathbb{T}$ in the generation n - 1 gives progeny to N_u marked children $(u^1, M(u^1)), \ldots, (u^{N_u}, M(u^{N_u}))$ independently of other vertices in generation n - 1 according to the law of (N, M), thus forming the generation m.

A Galton-Watson marked tree $(\mathbb{T}, (M(u); u \in \mathbb{T}))$



Random walk on ${\boldsymbol{\mathcal E}}$

For a realization of $\mathcal{E} = (\mathbb{T}, (M(u); u \in \mathbb{T}))$, introduce a $\mathbb{T} \cup \{e^*\}$ -valued random walk $X = (X_j)_{j \in \mathbb{N}}$ under the quenched probability $\mathbb{P}^{\mathcal{E}}$, starting from e and reflected in e^* with the following transition probabilities: for any $u \neq e^*$

$$p^{\mathcal{E}}(u, u^{*}) = \frac{1}{1 + \sum_{j=1}^{N_{u}} M(u^{j})}, \ p^{\mathcal{E}}(u, u^{j}) = \frac{M(u^{j})}{1 + \sum_{j=1}^{N_{u}} M(u^{j})}.$$

For a realization of $\mathcal{E} = (\mathbb{T}, (M(u); u \in \mathbb{T}))$, introduce a $\mathbb{T} \cup \{e^*\}$ -valued random walk $X = (X_j)_{j \in \mathbb{N}}$ under the quenched probability $\mathbb{P}^{\mathcal{E}}$, starting from e and reflected in e^* with the following transition probabilities: for any $u \neq e^*$

$$p^{\mathcal{E}}(u, u^*) = \frac{1}{1 + \sum_{j=1}^{N_u} M(u^j)}, \ p^{\mathcal{E}}(u, u^j) = \frac{M(u^j)}{1 + \sum_{j=1}^{N_u} M(u^j)}.$$

Define the annealed probabilities

$$\mathbb{P} := \mathsf{E}[\mathbb{P}^{\mathcal{E}}(\cdot)] \text{ and } \mathbb{P}^* := \mathsf{E}^*[\mathbb{P}^{\mathcal{E}}(\cdot)].$$

The slow random walk on $\ensuremath{\mathcal{E}}$

Introduce the following function

$$\psi(t) := \mathsf{E}\Big[\sum_{|u|=1} M(u)^t\Big],$$

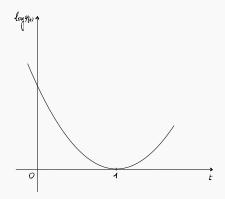
The slow random walk on $\ensuremath{\mathcal{E}}$

Introduce the following function

$$\psi(t) := \mathsf{E}\Big[\sum_{|u|=1} M(u)^t\Big],$$

and assume

$$\psi(1) = 1 \text{ and } \psi'(1) = 0.$$
 (1)



The slow random walk on ${\mathcal E}$

Introduce the following function

$$\psi(t) := \mathsf{E}\Big[\sum_{|u|=1} M(u)^t\Big],$$

and assume

$$\psi(1) = 1$$
 and $\psi'(1) = 0.$ (1)

Properties, under (1)

• X is null recurrent (Faraud 2011),

The slow random walk on ${\mathcal E}$

Introduce the following function

$$\psi(t) := \mathsf{E}\Big[\sum_{|u|=1} M(u)^t\Big],$$

and assume

$$\psi(1) = 1$$
 and $\psi'(1) = 0.$ (1)

Properties, under (1)

- X is null recurrent (Faraud 2011),
- X is slow: ℙ*-almost surely

$$\frac{1}{(\log n)^3} \max_{j \le n} |X_j| \xrightarrow[n \to \infty]{} \frac{8}{3\pi^2 \psi''(1)}$$
(Faraud, Hu, Shi 2012),

The slow random walk on ${\mathcal E}$

Introduce the following function

$$\psi(t) := \mathsf{E}\Big[\sum_{|u|=1} M(u)^t\Big],$$

and assume

$$\psi(1) = 1$$
 and $\psi'(1) = 0.$ (1)

Properties, under (1)

- X is null recurrent (Faraud 2011),
- X is slow: ℙ*-almost surely

$$\frac{1}{(\log n)^3} \max_{j \le n} |X_j| \xrightarrow[n \to \infty]{} \frac{8}{3\pi^2 \psi''(1)}$$
 (Faraud, Hu, Shi 2012),

and $(|X_n|/(\log n)^2)_{n\geq 2}$ converges in law under \mathbb{P}^* to a positive random variable (Hu, Shi 2016).

Introduce the following function

$$\psi(t) := \mathsf{E}\Big[\sum_{|u|=1} M(u)^t\Big],$$

and assume

$$\psi(1) = 1 \text{ and } \psi'(1) = 0.$$
 (1)

Properties, under (1)

 $\left(\frac{\log n}{n}\mathcal{L}^n\right)_{n\in\mathbb{N}^*}$ converges in \mathbb{P}^* -probability (Hu, Shi 2016).

The (sub-)diffusive random walk on $\ensuremath{\mathcal{E}}$

Now assume

$$\psi(1) = 1, \ \psi'(1) < 0,$$
 (2)

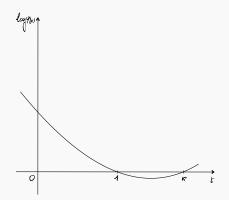
The (sub-)diffusive random walk on $\ensuremath{\mathcal{E}}$

Now assume

$$\psi(1) = 1, \ \psi'(1) < 0,$$
 (2)

and let

$$\kappa := \inf\{t > 1; \ \psi(t) = 1\} \in (1, \infty).$$



The (sub-)diffusive random walk on ${\cal E}$

Now assume

$$\psi(1) = 1, \ \psi'(1) < 0,$$
 (2)

and let

$$\kappa := \inf\{t > 1; \ \psi(t) = 1\} \in (1, \infty).$$

Properties, under (2)

• X is null recurrent (Faraud 2011),

The (sub-)diffusive random walk on ${\cal E}$

Now assume

$$\psi(1) = 1, \ \psi'(1) < 0,$$
 (2)

and let

$$\kappa := \inf\{t > 1; \ \psi(t) = 1\} \in (1, \infty).$$

Properties, under (2)

- X is null recurrent (Faraud 2011),
- \mathbb{P}^* -almost surely

$$\max_{j\leq n} |X_j| \approx n^{1-\frac{1}{\kappa\wedge 2}}$$
(Hu, Shi 2007).

The (sub-)diffusive random walk on ${\cal E}$

Now assume

$$\psi(1) = 1, \ \psi'(1) < 0,$$
 (2)

and let

$$\kappa := \inf\{t > 1; \ \psi(t) = 1\} \in (1, \infty).$$

Properties, under (2)

- X is null recurrent (Faraud 2011),
- \mathbb{P}^* -almost surely

$$\max_{j\leq n} |X_j| \approx n^{1-\frac{1}{\kappa\wedge 2}}$$
(Hu, Shi 2007).

 $(|X_n|/n^{1-\frac{1}{\kappa\wedge 2}})_{n\in\mathbb{N}^*}$ if $\kappa \neq 2$ and $((\frac{\log n}{n})^{1/2}|X_n|)_{n\in\mathbb{N}^*}$ if $\kappa = 2$ converge in law under \mathbb{P}^* (Faraud 2011; Aïdékon, de Raphélis 2017 and de Raphélis 2022).

Now assume

$$\psi(1) = 1, \ \psi'(1) < 0,$$
 (2)

and let

$$\kappa := \inf\{t > 1; \ \psi(t) = 1\} \in (1, \infty).$$

Properties, under (2)

 $(\mathcal{L}^n/n^{\frac{1}{\kappa\wedge 2}})$ if $\kappa \neq 2$ and $(\mathcal{L}^n/(n \log n)^{1/2})$ if $\kappa = 2$ converge in law under \mathbb{P}^* (Hu 2017; K 2023+).

Now assume (2) and $\kappa > 2$ (the diffusive case).

Now assume (2) and $\kappa > 2$ (the diffusive case).

Proporties (Aïdékon, de Raphélis 2017)

En ℙ*-probabilité

$$\frac{1}{n} \# \mathcal{R}_n \underset{n \to \infty}{\longrightarrow} \text{ constant } C_1 > 0,$$

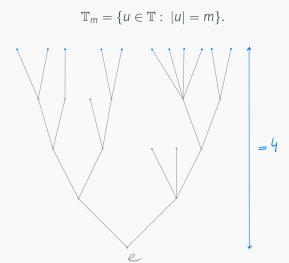
Now assume (2) and $\kappa > 2$ (the diffusive case).

Proporties (Aïdékon, de Raphélis 2017) En \mathbb{P}^* -probabilité $\frac{1}{n} \# \mathcal{R}_n \xrightarrow[n \to \infty]{} \text{constant } C_1 > 0,$ and, in law $\frac{C_2}{n^{1/2}} \mathcal{R}_n \xrightarrow[n \to \infty]{} \mathcal{T}_{(|B_t|)_{t \in [0,1]}},$

where $C_1, C_2 > 0$ are explicit constants.

Generalized range in the diffusive case

Let $m \in \mathbb{N}^*$. Note \mathbb{T}_m the *m*-th generation of the \mathbb{T} :



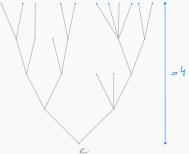
Let $m \in \mathbb{N}^*$. Note \mathbb{T}_m the *m*-th generation of the \mathbb{T} :

```
\mathbb{T}_m = \{ u \in \mathbb{T} : |u| = m \}.
```

For any $k \in \mathbb{N}$, $k \ge 2$, introduce

$$\Delta_m^k := \{ \mathbf{x} = (x^{(1)}, \dots, x^{(k)}) \in (\mathbb{T}_m)^{\times k}; \ \forall \ i \neq j, \ x^{(i)} \neq x^{(j)} \}.$$

the set of *k*-tuples of distinct vertices of \mathbb{T}_m .



Let $m \in \mathbb{N}^*$. Note \mathbb{T}_m the *m*-th generation of the \mathbb{T} :

 $\mathbb{T}_m = \{ u \in \mathbb{T} : |u| = m \}.$

For any $k \in \mathbb{N}$, $k \ge 2$, introduce

$$\Delta_m^k := \{ \mathbf{x} = (x^{(1)}, \dots, x^{(k)}) \in (\mathbb{T}_m)^{\times k}; \ \forall \ i \neq j, \ x^{(i)} \neq x^{(j)} \},\$$

the set of k-tuples of distinct vertices of \mathbb{T}_m . Let $n \in \mathbb{N}$ and $\mathbb{B}_n^k \subset \mathbb{T}^{\times k}$. Introduce the following range

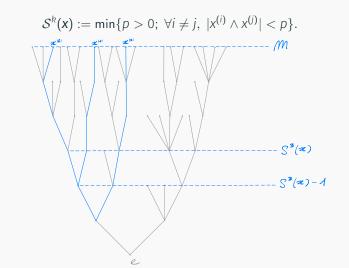
$$R_n^k := \sum_{\mathbf{x} \in \Delta_{m_n}^k} \mathbb{1}_{\{\mathcal{L}_{\mathbf{x}}^n \geq 1\}} \mathbb{1}_{\{\mathbf{x} \in \mathbb{B}_n^k\}},$$

where, for any $\mathbf{x} = (x^{(1)}, \dots, x^{(k)}) \in \Delta_m^k$, $\mathcal{L}_{\mathbf{x}}^n = \min_{1 \le i \le k} \mathcal{L}_{\mathbf{x}^{(i)}}^{\tau^n}$.

Let $\mathbf{x} = (x^{(1)}, \dots, x^{(k)}) \in \Delta_m^k$. Define the first coalescent time $\mathcal{S}^k(\mathbf{x}) - 1$ of the vertices $x^{(1)}, \dots, x^{(k)}$ by

$$S^{k}(\mathbf{x}) := \min\{p > 0; \forall i \neq j, |x^{(i)} \land x^{(j)}| < p\}.$$

Let $\mathbf{x} = (x^{(1)}, \dots, x^{(k)}) \in \Delta_m^k$. Define the first coalescent time $\mathcal{S}^k(\mathbf{x}) - 1$ of the vertices $x^{(1)}, \dots, x^{(k)}$ by



Let $\mathbf{x} = (x^{(1)}, \dots, x^{(k)}) \in \Delta_m^k$. Define the first coalescent time $\mathcal{S}^k(\mathbf{x}) - 1$ of the vertices $x^{(1)}, \dots, x^{(k)}$ by

$$S^{k}(\mathbf{x}) := \min\{p > 0; \forall i \neq j, |x^{(i)} \land x^{(j)}| < p\}.$$

Let $p \in \{1, \ldots, m\}$. Introduce the subset $\mathcal{C}_{m,p}^k$ of Δ_m^k

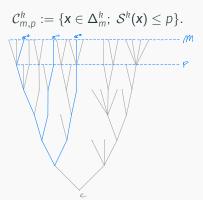
$$\mathcal{C}_{m,p}^k := \{ \mathbf{x} \in \Delta_m^k; \ \mathcal{S}^k(\mathbf{x}) \le p \}.$$

Constraints on visited vertices

Let $\mathbf{x} = (x^{(1)}, \dots, x^{(k)}) \in \Delta_m^k$. Define the first coalescent time $\mathcal{S}^k(\mathbf{x}) - 1$ of the vertices $x^{(1)}, \dots, x^{(k)}$ by

$$S^{k}(\mathbf{x}) := \min\{p > 0; \forall i \neq j, |x^{(i)} \land x^{(j)}| < p\}.$$

Let $p \in \{1, \ldots, m\}$. Introduce the subset $\mathcal{C}_{m,p}^k$ of Δ_m^k



We assume here that for all $n \in \mathbb{N}^*$, $\mathbb{B}_n^k = \mathbb{B}^k$ where the set \mathbb{B}^k satisfies the following hereditary hypothesis:

Hereditary hypothesis

There exists $\mathfrak{g} \in \mathbb{N}^*$ such that for any $p \ge \mathfrak{g}$, if $|x^{(i)}| = m \ge p$ and $\mathbf{x} = (x^{(1)}, \ldots, x^{(k)}) \in \mathcal{C}_{m,p}^k$, then

$$\mathbf{x} \in \mathbb{B}^k \iff \mathbf{x}_p \in \mathbb{B}^k,$$

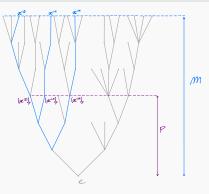
where $\mathbf{x}_{p} = ((x^{(1)})_{p}, \dots, (x^{(k)})_{p}).$

Hereditary hypothesis

There exists $\mathfrak{g} \in \mathbb{N}^*$ such that for any $p \ge \mathfrak{g}$, if $\mathbf{x} = (x^{(1)}, \dots, x^{(k)}) \in \mathcal{C}_{m,p}^k$ (with $m \ge p$), then

$$\mathbf{x} \in \mathbb{B}^k \iff \mathbf{x}_p \in \mathbb{B}^k,$$

where $\mathbf{x}_{p} = ((x^{(1)})_{p}, \dots, (x^{(k)})_{p}).$



Theorem (K 23)

Let $m_n = o(n^{1/2})$, $m_n \ge \delta \log n$ for some $\delta > 0$. Assume $\kappa > 2k$. If the hereditary hypothesis holds, then, in \mathbb{P}^* -probability

$$\frac{1}{n^{k/2}}\sum_{x\in\Delta_{m_n}^k}\mathbb{1}_{\{\mathcal{L}_x^n\geq 1\}}\mathbb{1}_{\{x\in\mathbb{B}^k\}}\xrightarrow[n\to\infty]{}(C_\infty)^k\mathcal{A}_\infty(\mathbb{B}^k),$$

where $c_{\infty} > 0$ is a constant and

$$\mathcal{A}_{\infty}(\mathbb{B}^{k}) = \lim_{\ell \to \infty} \sum_{\mathbf{x} \in \Delta_{\ell}^{k}} \mathbb{1}_{\{\mathbf{x} \in \mathbb{B}^{k}\}} \prod_{i=1}^{k} \prod_{e < z \le X^{(i)}} A(z).$$

For instance, take

• k = 1 and $\mathbb{B}^1 = \mathbb{T}$

• k = 1 and $\mathbb{B}^1 = \mathbb{T}$

 $\frac{1}{n^{1/2}} \# (\mathbb{T}_{m_n} \cap \mathcal{R}_{\tau^n}) \xrightarrow[n \to \infty]{} c_{\infty} W_{\infty} \quad \text{in } \mathbb{P}^* \text{-probability},$ where $W_{\infty} := \lim_{n \to \infty} \sum_{|u|=n} \prod_{e < z \le u} M(z);$

• k = 1 and $\mathbb{B}^1 = \mathbb{T}$

 $\frac{1}{n^{1/2}} \# (\mathbb{T}_{m_n} \cap \mathcal{R}_{\tau^n}) \underset{n \to \infty}{\longrightarrow} c_{\infty} W_{\infty} \quad \text{in } \mathbb{P}^* \text{-probability},$

where $W_{\infty} := \lim_{n \to \infty} \sum_{|u|=n} \prod_{e < z \le u} M(z)$;

• $k \geq 2, p \in \mathbb{N}^*$ and $\mathbb{B}^k = \{\mathbf{x}; \ \mathcal{S}^k(\mathbf{x}) \leq p\}$

• k = 1 and $\mathbb{B}^1 = \mathbb{T}$ $\frac{1}{n^{1/2}} \# (\mathbb{T}_{m_n} \cap \mathcal{R}_{\tau^n}) \xrightarrow[n \to \infty]{} c_{\infty} W_{\infty} \quad \text{in } \mathbb{P}^* \text{-probability},$ where $W_{\infty} := \lim_{n \to \infty} \sum_{|u|=n} \prod_{e < z \le u} M(z);$ • $k \ge 2, p \in \mathbb{N}^*$ and $\mathbb{B}^k = \{x; S^k(x) \le p\}$ $\frac{1}{n^{k/2}} \sum_{r \ge 1} \mathbb{1}_{\{\mathcal{L}^n_x \ge 1\}} \xrightarrow[n \to \infty]{} (c_{\infty})^k \mathcal{A}_{\infty}(\{x; S^k(x) \le p\}) \quad \text{in } \mathbb{P}^* \text{-probability},$

 $x \in C_{m_n,p}^k$

and $\lim_{p\to\infty} \mathcal{A}_{\infty}(\{\mathbf{x}; S^k(\mathbf{x}) \leq p\}) = (c_{\infty}W_{\infty})^k$.

 $\cdot k = 1 \text{ and } \mathbb{B}^{1} = \mathbb{T}$ $\frac{1}{n^{1/2}} \# (\mathbb{T}_{m_{n}} \cap \mathcal{R}_{\tau^{n}}) \xrightarrow[n \to \infty]{} c_{\infty} W_{\infty} \text{ in } \mathbb{P}^{*} \text{-probability,}$ $\text{where } W_{\infty} := \lim_{n \to \infty} \sum_{|u|=n} \prod_{e < z \le u} M(z);$ $\cdot k \ge 2, p \in \mathbb{N}^{*} \text{ and } \mathbb{B}^{k} = \{ \mathbf{x}; \ \mathcal{S}^{k}(\mathbf{x}) \le p \}$ $\frac{1}{n^{k/2}} \sum_{\mathbf{x} \in \mathcal{C}_{m_{n},p}^{k}} \mathbb{1}_{\{\mathcal{L}_{\mathbf{x}}^{n} \ge 1\}} \xrightarrow[n \to \infty]{} (c_{\infty})^{k} \mathcal{A}_{\infty}(\{\mathbf{x}; \ \mathcal{S}^{k}(\mathbf{x}) \le p\}) \text{ in } \mathbb{P}^{*} \text{-probability,}$

and $\lim_{p\to\infty} \mathcal{A}_{\infty}(\{x; S^k(x) \leq p\}) = (c_{\infty}W_{\infty})^k$.

• $k \geq 3, \lambda_2, \dots, \lambda_k \in \mathbb{N}^*$ and $\mathbb{B}^k = \bigcap_{i=2}^k \{\mathbf{x}; |\mathbf{x}^{(i-1)} \wedge \mathbf{x}^{(i)}| < \lambda_i\}$ etc.

Now, assume that $\alpha := \lim_{n \to \infty} \frac{m_n}{n^{1/2}} \in (0, \infty)$ exists.

Now, assume that $\alpha := \lim_{n \to \infty} \frac{m_n}{n^{1/2}} \in (0, \infty)$ exists.

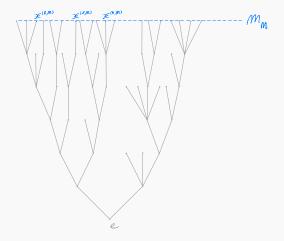
Proposition (K 23+)

In law, under \mathbb{P}^*

$$\frac{1}{n^{1/2}} \# (\mathbb{T}_{m_n} \cap \mathcal{R}_{\tau^n}) \underset{n \to \infty}{\longrightarrow} c_{\infty} W_{\infty} Z_{\alpha}$$

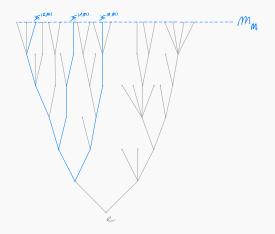
where $(Z_t)_{t\geq 0}$ is a CSBP starting from 1 with branching mechanism $\lambda \mapsto \frac{c_0}{W_{\infty}} \lambda^2$ for some constant $c_0 > 0$.

Pick $k \ge 2$ vertices $\mathfrak{X}^{(1,n)}, \ldots, \mathfrak{X}^{(k,n)}$ uniformly and without replacement in $\{u \in \mathcal{R}_{\tau^n}; |u| = m_n\}$.



Pick $k \ge 2$ vertices $\mathfrak{X}^{(1,n)}, \ldots, \mathfrak{X}^{(k,n)}$ uniformly and without replacement in $\{u \in \mathcal{R}_{\tau^n}; |u| = m_n\}$.

What does their genealogical tree look like?



Pick $k \ge 2$ vertices $\mathfrak{X}^{(1,n)}, \ldots, \mathfrak{X}^{(k,n)}$ uniformly and without replacement in $\{u \in \mathcal{R}_{\tau^n}; |u| = m_n\}$.

What does their genealogical tree look like? Define the random k-tuples $\mathfrak{X}^{(n)} := (\mathfrak{X}^{(1,n)}, \dots, \mathfrak{X}^{(k,n)}).$

Theorem (K 23)

Let $m_n = o(n^{1/2})$, $m_n \ge \delta \log n$ for some $\delta > 0$. Assume $\kappa > 2k$. If the hereditary hypothesis holds, then,

$$\lim_{n\to\infty}\mathbb{P}^*\big(\mathfrak{X}^{(n)}\in\mathbb{B}^k\big)=\mathsf{E}^*\Big[\frac{\mathcal{A}_\infty(\mathbb{B}^k)}{(W_\infty)^k}\Big],$$

Pick $k \ge 2$ vertices $\mathfrak{X}^{(1,n)}, \ldots, \mathfrak{X}^{(k,n)}$ uniformly and without replacement in $\{u \in \mathcal{R}_{\tau^n}; |u| = m_n\}$.

What does their genealogical tree look like? Define the random k-tuples $\mathfrak{X}^{(n)} := (\mathfrak{X}^{(1,n)}, \dots, \mathfrak{X}^{(k,n)}).$

In particular, for any $p \in \mathbb{N}^*$

with

$$\lim_{n \to \infty} \mathbb{P}^* \left(\mathcal{S}^k(\mathfrak{X}^{(n)}) \le p \right) = \mathsf{E}^* \left[\frac{\mathcal{A}_{\infty}(\{\mathbf{x}; \ \mathcal{S}^k(\mathbf{x}) \le p\})}{(W_{\infty})^k} \right],$$
$$\lim_{p \to \infty} \mathsf{E}^* \left[\frac{\mathcal{A}_{\infty}(\{\mathbf{x}; \ \mathcal{S}^k(\mathbf{x}) \le p\})}{(W_{\infty})^k} \right] = 1.$$

Pick $k \ge 2$ vertices $\mathfrak{X}^{(1,n)}, \ldots, \mathfrak{X}^{(k,n)}$ uniformly and without replacement in $\{u \in \mathcal{R}_{\tau^n}; |u| = m_n\}$.

What does their genealogical tree look like? Define the random k-tuples $\mathfrak{X}^{(n)} := (\mathfrak{X}^{(1,n)}, \dots, \mathfrak{X}^{(k,n)}).$

In particular, for any $p \in \mathbb{N}^*$

$$\lim_{n \to \infty} \mathbb{P}^* \left(\mathcal{S}^k(\mathfrak{X}^{(n)}) \le p \right) = \mathsf{E}^* \left[\frac{\mathcal{A}_{\infty}(\{x; \ \mathcal{S}^k(x) \le p\})}{(W_{\infty})^k} \right],$$

with $\lim_{p \to \infty} \mathsf{E}^* \left[\frac{\mathcal{A}_{\infty}(\{x; \ \mathcal{S}^k(x) \le p\})}{(W_{\infty})^k} \right] = 1.$

Similar behaviour as the one observed for the genealogy of a regular Gaton-Watson super-critical tree (Athreya 2012; Johnston 2019; Harris, Johnston, Roberts 2020).

Pick 2 vertices $\mathfrak{X}^{(1,n)}$ and $\mathfrak{X}^{(2,n)}$ uniformly and without replacement in $\{u \in \mathcal{R}_{\tau^n}; |u| = m_n\}.$

Theorem (Andreoletti, K 23+)

Let $m_n = n^{1/2}$, $\ell \in \mathbb{N}^*$ and $b \in (0, 1)$. The two following limits exist:

$$\mathcal{D}_{\ell} := \lim_{n \to \infty} \mathbb{P}^* \left(|\mathfrak{X}^{(1,n)} \wedge \mathfrak{X}^{(2,n)}| < \ell \right)$$

and

$$q_b := \lim_{n \to \infty} \mathbb{P}^* \big(|\mathfrak{X}^{(1,n)} \wedge \mathfrak{X}^{(2,n)}| \ge b n^{1/2} \big).$$

Pick 2 vertices $\mathfrak{X}^{(1,n)}$ and $\mathfrak{X}^{(2,n)}$ uniformly and without replacement in $\{u \in \mathcal{R}_{\tau^n}; |u| = m_n\}.$

Theorem (Andreoletti, K 23+)

Let $m_n = n^{1/2}$, $\ell \in \mathbb{N}^*$ and $b \in (0, 1)$. The two following limits exist:

$$\mathcal{D}_{\ell} := \lim_{n \to \infty} \mathbb{P}^* \left(|\mathfrak{X}^{(1,n)} \wedge \mathfrak{X}^{(2,n)}| < \ell \right)$$

and

$$q_b := \lim_{n \to \infty} \mathbb{P}^* \big(|\mathfrak{X}^{(1,n)} \wedge \mathfrak{X}^{(2,n)}| \ge b n^{1/2} \big).$$

Moreover

- $\lim_{\ell \to \infty} p_{\ell} \in (0, 1)$, $\lim_{b \to 0} p_b \in (0, 1)$;
- $\lim_{\ell \to \infty} p_{\ell} + \lim_{b \to 0} p_b = 1.$

Merci!